Reinforcement-learning pricing algorithms sometimes converge to supra-competitive prices even in markets where collusion is impossible by design or cannot be an equilibrium outcome. We analyze when such spurious collusion may arise, and when instead the algorithms learn genuinely collusive strategies, focusing on the role of the rate and mode of exploration.

Calvano E., Calzolari G., Denicolò V., Pastorello S. (2023). Algorithmic collusion: Genuine or spurious?. INTERNATIONAL JOURNAL OF INDUSTRIAL ORGANIZATION, 90, 1-5 [10.1016/j.ijindorg.2023.102973].

Algorithmic collusion: Genuine or spurious?

Calvano E.;Calzolari G.;Denicolò V.;Pastorello S.
2023

Abstract

Reinforcement-learning pricing algorithms sometimes converge to supra-competitive prices even in markets where collusion is impossible by design or cannot be an equilibrium outcome. We analyze when such spurious collusion may arise, and when instead the algorithms learn genuinely collusive strategies, focusing on the role of the rate and mode of exploration.
2023
Calvano E., Calzolari G., Denicolò V., Pastorello S. (2023). Algorithmic collusion: Genuine or spurious?. INTERNATIONAL JOURNAL OF INDUSTRIAL ORGANIZATION, 90, 1-5 [10.1016/j.ijindorg.2023.102973].
Calvano E.; Calzolari G.; Denicolò V.; Pastorello S.
File in questo prodotto:
File Dimensione Formato  
True_Or_Fake_IJIO_Revision+submitted.pdf

embargo fino al 25/06/2025

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 526.5 kB
Formato Adobe PDF
526.5 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952593
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact