We discuss criteria for a stable map of genus two and degree 4 to the projective plane to be smoothable, as an application of our modular desingularisation of M¯2,n (ℙ^r, d)^main via logarithmic geometry and Gorenstein singularities.

Battistella L., Carocci F. (2022). A geographical study of M¯2(ℙ2, 4)main. ADVANCES IN GEOMETRY, 22(4), 463-480 [10.1515/advgeom-2022-0017].

A geographical study of M¯2(ℙ2, 4)main

Battistella L.
;
2022

Abstract

We discuss criteria for a stable map of genus two and degree 4 to the projective plane to be smoothable, as an application of our modular desingularisation of M¯2,n (ℙ^r, d)^main via logarithmic geometry and Gorenstein singularities.
2022
Battistella L., Carocci F. (2022). A geographical study of M¯2(ℙ2, 4)main. ADVANCES IN GEOMETRY, 22(4), 463-480 [10.1515/advgeom-2022-0017].
Battistella L.; Carocci F.
File in questo prodotto:
File Dimensione Formato  
10.1515_advgeom-2022-0017.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952546
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact