We discuss criteria for a stable map of genus two and degree 4 to the projective plane to be smoothable, as an application of our modular desingularisation of M¯2,n (ℙ^r, d)^main via logarithmic geometry and Gorenstein singularities.
Battistella L., Carocci F. (2022). A geographical study of M¯2(ℙ2, 4)main. ADVANCES IN GEOMETRY, 22(4), 463-480 [10.1515/advgeom-2022-0017].
A geographical study of M¯2(ℙ2, 4)main
Battistella L.
;
2022
Abstract
We discuss criteria for a stable map of genus two and degree 4 to the projective plane to be smoothable, as an application of our modular desingularisation of M¯2,n (ℙ^r, d)^main via logarithmic geometry and Gorenstein singularities.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1515_advgeom-2022-0017.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.