We study the geometry of Gorenstein curve singularities of genus two, and their stable limits. These singularities come in two families, corresponding to either Weierstrass or conjugate points on a semistable tail. For every 0 < m < n, a stability condition — using one of the markings as a reference point, and thus not S_n-symmetric — defines proper Deligne–Mumford stacks M_{2, n}(m) with a dense open substack representing smooth curves.
Battistella L. (2022). Modular compactifications of M_{2,n} with Gorenstein curves. ALGEBRA & NUMBER THEORY, 16(7), 1547-1587 [10.2140/ant.2022.16.1547].
Modular compactifications of M_{2,n} with Gorenstein curves
Battistella L.
2022
Abstract
We study the geometry of Gorenstein curve singularities of genus two, and their stable limits. These singularities come in two families, corresponding to either Weierstrass or conjugate points on a semistable tail. For every 0 < m < n, a stability condition — using one of the markings as a reference point, and thus not S_n-symmetric — defines proper Deligne–Mumford stacks M_{2, n}(m) with a dense open substack representing smooth curves.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1906.06367.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.