We study the geometry of Gorenstein curve singularities of genus two, and their stable limits. These singularities come in two families, corresponding to either Weierstrass or conjugate points on a semistable tail. For every 0 < m < n, a stability condition — using one of the markings as a reference point, and thus not S_n-symmetric — defines proper Deligne–Mumford stacks M_{2, n}(m) with a dense open substack representing smooth curves.

Battistella L. (2022). Modular compactifications of M_{2,n} with Gorenstein curves. ALGEBRA & NUMBER THEORY, 16(7), 1547-1587 [10.2140/ant.2022.16.1547].

Modular compactifications of M_{2,n} with Gorenstein curves

Battistella L.
2022

Abstract

We study the geometry of Gorenstein curve singularities of genus two, and their stable limits. These singularities come in two families, corresponding to either Weierstrass or conjugate points on a semistable tail. For every 0 < m < n, a stability condition — using one of the markings as a reference point, and thus not S_n-symmetric — defines proper Deligne–Mumford stacks M_{2, n}(m) with a dense open substack representing smooth curves.
2022
Battistella L. (2022). Modular compactifications of M_{2,n} with Gorenstein curves. ALGEBRA & NUMBER THEORY, 16(7), 1547-1587 [10.2140/ant.2022.16.1547].
Battistella L.
File in questo prodotto:
File Dimensione Formato  
1906.06367.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact