We construct and study the theory of relative quasimaps in genus zero, in the spirit of Gathmann. When X is a smooth toric variety and Y is a smooth very ample hypersurface in X, we produce a virtual class on the moduli space of relative quasimaps to (X,Y), which we use to define relative quasimap invariants. We obtain a recursion formula which expresses each relative invariant in terms of invariants of lower tangency, and apply this formula to derive a quantum Lefschetz theorem for quasimaps, expressing the restricted quasimap invariants of Y in terms of those of X. Finally, we show that the relative I-function of Fan-Tseng-You coincides with a natural generating function for relative quasimap invariants, providing mirror-symmetric motivation for the theory.

Battistella L., Nabijou N. (2021). Relative Quasimaps and Mirror Formulae. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021(10), 7885-7931 [10.1093/imrn/rnz339].

Relative Quasimaps and Mirror Formulae

Battistella L.;
2021

Abstract

We construct and study the theory of relative quasimaps in genus zero, in the spirit of Gathmann. When X is a smooth toric variety and Y is a smooth very ample hypersurface in X, we produce a virtual class on the moduli space of relative quasimaps to (X,Y), which we use to define relative quasimap invariants. We obtain a recursion formula which expresses each relative invariant in terms of invariants of lower tangency, and apply this formula to derive a quantum Lefschetz theorem for quasimaps, expressing the restricted quasimap invariants of Y in terms of those of X. Finally, we show that the relative I-function of Fan-Tseng-You coincides with a natural generating function for relative quasimap invariants, providing mirror-symmetric motivation for the theory.
2021
Battistella L., Nabijou N. (2021). Relative Quasimaps and Mirror Formulae. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021(10), 7885-7931 [10.1093/imrn/rnz339].
Battistella L.; Nabijou N.
File in questo prodotto:
File Dimensione Formato  
IMRN.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact