Classical portfolio optimization often requires forecasting asset returns and their corresponding variances in spite of the low signal-to-noise ratio provided in the financial markets. Modern deep reinforcement learning (DRL) offers a framework for optimizing sequential trader decisions but lacks theoretical guarantees of convergence. On the other hand, the performances on real financial trading problems are strongly affected by the goodness of the signal used to predict returns. To disentangle the effects coming from return unpredictability from those coming from algorithm un-trainability, we investigate the performance of model-free DRL traders in a market environment with different known mean-reverting factors driving the dynamics. When the framework admits an exact dynamic programming solution, we can assess the limits and capabilities of different value-based algorithms to retrieve meaningful trading signals in a datadriven manner. We consider DRL agents that leverage classical strategies to increase their performances and we show that this approach guarantees flexibility, outperforming the benchmark strategy when the price dynamics is misspecified and some original assumptions on the market environment are violated with the presence of extreme events and volatility clustering

Brini A., Tantari D. (2023). Deep reinforcement trading with predictable returns. PHYSICA. A, 622, 1-20 [10.1016/j.physa.2023.128901].

Deep reinforcement trading with predictable returns

Tantari D.
2023

Abstract

Classical portfolio optimization often requires forecasting asset returns and their corresponding variances in spite of the low signal-to-noise ratio provided in the financial markets. Modern deep reinforcement learning (DRL) offers a framework for optimizing sequential trader decisions but lacks theoretical guarantees of convergence. On the other hand, the performances on real financial trading problems are strongly affected by the goodness of the signal used to predict returns. To disentangle the effects coming from return unpredictability from those coming from algorithm un-trainability, we investigate the performance of model-free DRL traders in a market environment with different known mean-reverting factors driving the dynamics. When the framework admits an exact dynamic programming solution, we can assess the limits and capabilities of different value-based algorithms to retrieve meaningful trading signals in a datadriven manner. We consider DRL agents that leverage classical strategies to increase their performances and we show that this approach guarantees flexibility, outperforming the benchmark strategy when the price dynamics is misspecified and some original assumptions on the market environment are violated with the presence of extreme events and volatility clustering
2023
Brini A., Tantari D. (2023). Deep reinforcement trading with predictable returns. PHYSICA. A, 622, 1-20 [10.1016/j.physa.2023.128901].
Brini A.; Tantari D.
File in questo prodotto:
File Dimensione Formato  
DeepRL.pdf

Open Access dal 23/05/2024

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/951636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact