Among the myriad preference elicitation methods used in experimental economics and finance, adaptive elicitation methods are a (relatively) recent innovation. Here we present a ready-made and user-friendly z-Tree application for the elicitation of risk- and time-preference parameters from the most prominent adaptive elicitation method, Dynamic Experiments for Estimating Preferences (Toubia et al., 2013). In addition to the software application, we include the code and statistical scripts for data processing when using this method that enables econometric estimation of the individual and aggregate risk- and time-preference parameters.
Fidanoski F., Johnson T. (2023). A z-Tree implementation of the Dynamic Experiments for Estimating Preferences [DEEP] method. JOURNAL OF BEHAVIORAL AND EXPERIMENTAL FINANCE, 38, 1-10 [10.1016/j.jbef.2023.100805].
A z-Tree implementation of the Dynamic Experiments for Estimating Preferences [DEEP] method
Fidanoski F.
Primo
;Johnson T.Secondo
2023
Abstract
Among the myriad preference elicitation methods used in experimental economics and finance, adaptive elicitation methods are a (relatively) recent innovation. Here we present a ready-made and user-friendly z-Tree application for the elicitation of risk- and time-preference parameters from the most prominent adaptive elicitation method, Dynamic Experiments for Estimating Preferences (Toubia et al., 2013). In addition to the software application, we include the code and statistical scripts for data processing when using this method that enables econometric estimation of the individual and aggregate risk- and time-preference parameters.File | Dimensione | Formato | |
---|---|---|---|
FFTJ_PUBLISHED.pdf
accesso aperto
Descrizione: PUBLISHED
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.