Among the myriad preference elicitation methods used in experimental economics and finance, adaptive elicitation methods are a (relatively) recent innovation. Here we present a ready-made and user-friendly z-Tree application for the elicitation of risk- and time-preference parameters from the most prominent adaptive elicitation method, Dynamic Experiments for Estimating Preferences (Toubia et al., 2013). In addition to the software application, we include the code and statistical scripts for data processing when using this method that enables econometric estimation of the individual and aggregate risk- and time-preference parameters.

Fidanoski F., Johnson T. (2023). A z-Tree implementation of the Dynamic Experiments for Estimating Preferences [DEEP] method. JOURNAL OF BEHAVIORAL AND EXPERIMENTAL FINANCE, 38, 1-10 [10.1016/j.jbef.2023.100805].

A z-Tree implementation of the Dynamic Experiments for Estimating Preferences [DEEP] method

Fidanoski F.
Primo
;
Johnson T.
Secondo
2023

Abstract

Among the myriad preference elicitation methods used in experimental economics and finance, adaptive elicitation methods are a (relatively) recent innovation. Here we present a ready-made and user-friendly z-Tree application for the elicitation of risk- and time-preference parameters from the most prominent adaptive elicitation method, Dynamic Experiments for Estimating Preferences (Toubia et al., 2013). In addition to the software application, we include the code and statistical scripts for data processing when using this method that enables econometric estimation of the individual and aggregate risk- and time-preference parameters.
2023
Fidanoski F., Johnson T. (2023). A z-Tree implementation of the Dynamic Experiments for Estimating Preferences [DEEP] method. JOURNAL OF BEHAVIORAL AND EXPERIMENTAL FINANCE, 38, 1-10 [10.1016/j.jbef.2023.100805].
Fidanoski F.; Johnson T.
File in questo prodotto:
File Dimensione Formato  
FFTJ_PUBLISHED.pdf

accesso aperto

Descrizione: PUBLISHED
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/951100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact