Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible.

Carvalho L.B., Teigas-Campos P.A.D., Jorge S., Protti M., Mercolini L., Dhir R., et al. (2024). Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets. TALANTA, 266, 1-9 [10.1016/j.talanta.2023.124953].

Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets

Protti M.;Mercolini L.;
2024

Abstract

Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible.
2024
Carvalho L.B., Teigas-Campos P.A.D., Jorge S., Protti M., Mercolini L., Dhir R., et al. (2024). Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets. TALANTA, 266, 1-9 [10.1016/j.talanta.2023.124953].
Carvalho L.B.; Teigas-Campos P.A.D.; Jorge S.; Protti M.; Mercolini L.; Dhir R.; Wiśniewski J.R.; Lodeiro C.; Santos H.M.; Capelo J.L.
File in questo prodotto:
File Dimensione Formato  
Carvalho et al_Talanta_266(2024)124953.pdf

accesso aperto

Descrizione: Full open-access paper
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 7.8 MB
Formato Adobe PDF
7.8 MB Adobe PDF Visualizza/Apri
1-s2.0-S003991402300704X-mmc3.xlsx

accesso aperto

Descrizione: Suppplementary Material
Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 382.26 kB
Formato Microsoft Excel XML
382.26 kB Microsoft Excel XML Visualizza/Apri
1-s2.0-S003991402300704X-mmc3 (1).pdf

accesso aperto

Descrizione: Supplemetary Material
Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/950559
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact