We consider bootstrap inference for estimators which are (asymptotically) biased. We show that, even when the bias term cannot be consistently estimated, valid inference can be obtained by proper implementations of the bootstrap. Specifically, we show that the prepivoting approach of Beran (1987, 1988), originally proposed to deliver higher-order refinements, restores bootstrap validity by transforming the original bootstrap p-value into an asymptotically uniform random variable. We propose two different implementations of prepivoting (plug-in and double bootstrap), and provide general high-level conditions that imply validity of bootstrap inference. To illustrate the practical relevance and implementation of our results, we discuss five examples: (i) inference on a target parameter based on model averaging; (ii) ridge-type regularized estimators; (iii) nonparametric regression; (iv) a location model for infinite variance data; and (v) dynamic panel data models.

Cavaliere, G., Gonçalves, S., Nielsen, M.Ø., Zanelli, E. (2024). Bootstrap Inference in the Presence of Bias. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 119(548), 1-12 [10.1080/01621459.2023.2284980].

Bootstrap Inference in the Presence of Bias

Cavaliere, Giuseppe
;
Zanelli, Edoardo
2024

Abstract

We consider bootstrap inference for estimators which are (asymptotically) biased. We show that, even when the bias term cannot be consistently estimated, valid inference can be obtained by proper implementations of the bootstrap. Specifically, we show that the prepivoting approach of Beran (1987, 1988), originally proposed to deliver higher-order refinements, restores bootstrap validity by transforming the original bootstrap p-value into an asymptotically uniform random variable. We propose two different implementations of prepivoting (plug-in and double bootstrap), and provide general high-level conditions that imply validity of bootstrap inference. To illustrate the practical relevance and implementation of our results, we discuss five examples: (i) inference on a target parameter based on model averaging; (ii) ridge-type regularized estimators; (iii) nonparametric regression; (iv) a location model for infinite variance data; and (v) dynamic panel data models.
2024
Cavaliere, G., Gonçalves, S., Nielsen, M.Ø., Zanelli, E. (2024). Bootstrap Inference in the Presence of Bias. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 119(548), 1-12 [10.1080/01621459.2023.2284980].
Cavaliere, Giuseppe; Gonçalves, Sílvia; Nielsen, Morten Ørregaard; Zanelli, Edoardo
File in questo prodotto:
File Dimensione Formato  
Bootstrap Inference in the Presence of Bias.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/950108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact