In this review we summarise over 15 years of research and development around the prediction of whole bones strength from Computed Tomography data, with particular reference to the prediction of the risk of hip fracture in osteoporotic patients. We briefly discuss the theoretical background, and then provide a summary of the laboratory and clinical validation of these modelling technologies. We then discuss the three current clinical applications: in clinical research, in clinical trials, and in clinical practice. On average the strength predicted with finite element models (QCT-FE) based on computed tomography is 7% more accurate that that predicted with areal bone mineral density from Dual X-ray Absorptiometry (DXA-aBMD), the current standard of care, both in term of laboratory validation on cadaver bones and in terms of stratification accuracy on clinical cohorts of fractured and non-fractured women. This improved accuracy makes QCT-FE superior to DXA-aBMD in clinical research and in clinical trials, where the its use can cut in half the number of patients to be enrolled to get the same statistical power. For routine clinical use to decide who to treat with antiresorptive drugs, QCT-FE is more accurate but less cost-effective than DXA-aBMD, at least when the decision is on first line treatment like bisphosphonates. But the ability to predict skeletal strength from medical imaging is now opening a number of other applications, for example in paediatrics and oncology.

Predicting bone strength from CT data: Clinical applications / Viceconti M.. - In: MORPHOLOGIE. - ISSN 1286-0115. - ELETTRONICO. - 103:343(2019), pp. 180-186. [10.1016/j.morpho.2019.09.007]

Predicting bone strength from CT data: Clinical applications

Viceconti M.
2019

Abstract

In this review we summarise over 15 years of research and development around the prediction of whole bones strength from Computed Tomography data, with particular reference to the prediction of the risk of hip fracture in osteoporotic patients. We briefly discuss the theoretical background, and then provide a summary of the laboratory and clinical validation of these modelling technologies. We then discuss the three current clinical applications: in clinical research, in clinical trials, and in clinical practice. On average the strength predicted with finite element models (QCT-FE) based on computed tomography is 7% more accurate that that predicted with areal bone mineral density from Dual X-ray Absorptiometry (DXA-aBMD), the current standard of care, both in term of laboratory validation on cadaver bones and in terms of stratification accuracy on clinical cohorts of fractured and non-fractured women. This improved accuracy makes QCT-FE superior to DXA-aBMD in clinical research and in clinical trials, where the its use can cut in half the number of patients to be enrolled to get the same statistical power. For routine clinical use to decide who to treat with antiresorptive drugs, QCT-FE is more accurate but less cost-effective than DXA-aBMD, at least when the decision is on first line treatment like bisphosphonates. But the ability to predict skeletal strength from medical imaging is now opening a number of other applications, for example in paediatrics and oncology.
2019
Predicting bone strength from CT data: Clinical applications / Viceconti M.. - In: MORPHOLOGIE. - ISSN 1286-0115. - ELETTRONICO. - 103:343(2019), pp. 180-186. [10.1016/j.morpho.2019.09.007]
Viceconti M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/949394
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact