Recurrent Neural Networks (RNNs) have been shown to capture various aspects of syntax from raw linguistic input. In most previous experiments, however, learning happens over unrealistic corpora, which do not reflect the type and amount of data a child would be exposed to. This paper remedies this state of affairs by training an LSTM over a realistically sized subset of child-directed input. The behaviour of the network is analysed over time using a novel methodology which consists in quantifying the level of grammatical abstraction in the model{'}s generated output (its {`}babbling{'}), compared to the language it has been exposed to. We show that the LSTM indeed abstracts new structures as learning proceeds.

Pannitto, L., Herbelot, A. (2020). Recurrent babbling: evaluating the acquisition of grammar from limited input data. East Stroudsburg : Association for Computational Linguistics [10.18653/v1/2020.conll-1.13].

Recurrent babbling: evaluating the acquisition of grammar from limited input data

Pannitto, Ludovica
Primo
;
2020

Abstract

Recurrent Neural Networks (RNNs) have been shown to capture various aspects of syntax from raw linguistic input. In most previous experiments, however, learning happens over unrealistic corpora, which do not reflect the type and amount of data a child would be exposed to. This paper remedies this state of affairs by training an LSTM over a realistically sized subset of child-directed input. The behaviour of the network is analysed over time using a novel methodology which consists in quantifying the level of grammatical abstraction in the model{'}s generated output (its {`}babbling{'}), compared to the language it has been exposed to. We show that the LSTM indeed abstracts new structures as learning proceeds.
2020
Proceedings of the 24th Conference on Computational Natural Language Learning
165
176
Pannitto, L., Herbelot, A. (2020). Recurrent babbling: evaluating the acquisition of grammar from limited input data. East Stroudsburg : Association for Computational Linguistics [10.18653/v1/2020.conll-1.13].
Pannitto, Ludovica; Herbelot, Aurelie
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/949302
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact