Diradicals based on the Blatter units and connected by acetylene and alkene spacers have been prepared. All the molecules show sizably large diradical character and low energy singlet-triplet gaps. Their photo-physical properties concerning their lowest energy excited state have been studied in detail by steady-state and time-resolved absorption spectroscopy. We have fully identified the main optical absorption band and full absence of emission from the lowest energy excited state. A computational study has been also carried out that has helped to identify the presence of a conical intersection between the lowest energy excited state and the ground state which produces a highly efficient light-to-heat conversion of the absorbed radiation. Furthermore, an outstanding photo-thermal conversion 77.23 % has been confirmed, close to the highest in the diradicaloid field. For the first time, stable diradicals are applied to photo-thermal therapy of tumor cells with good stability and satisfactory performance at near-infrared region.A conical intersection between the lowest energy excited state and the ground state of the Blatter-type diradical is responsible for highly efficient light-to-heat conversion of the absorbed radiation. Also, it is first applied to photothermal therapy of tumor cells, demonstrating good stability and the highest photo-thermal conversion in the diradicaloid field.image
Ji Y., Moles Quintero S., Dai Y., Marín-Beloqui J.M., Zhang H., Zhan Q., et al. (2023). 77 % Photothermal Conversion in Blatter-Type Diradicals: Photophysics and Photodynamic Applications. ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, 62(42), 1-8 [10.1002/anie.202311387].
77 % Photothermal Conversion in Blatter-Type Diradicals: Photophysics and Photodynamic Applications
Dai Y.;Negri F.;
2023
Abstract
Diradicals based on the Blatter units and connected by acetylene and alkene spacers have been prepared. All the molecules show sizably large diradical character and low energy singlet-triplet gaps. Their photo-physical properties concerning their lowest energy excited state have been studied in detail by steady-state and time-resolved absorption spectroscopy. We have fully identified the main optical absorption band and full absence of emission from the lowest energy excited state. A computational study has been also carried out that has helped to identify the presence of a conical intersection between the lowest energy excited state and the ground state which produces a highly efficient light-to-heat conversion of the absorbed radiation. Furthermore, an outstanding photo-thermal conversion 77.23 % has been confirmed, close to the highest in the diradicaloid field. For the first time, stable diradicals are applied to photo-thermal therapy of tumor cells with good stability and satisfactory performance at near-infrared region.A conical intersection between the lowest energy excited state and the ground state of the Blatter-type diradical is responsible for highly efficient light-to-heat conversion of the absorbed radiation. Also, it is first applied to photothermal therapy of tumor cells, demonstrating good stability and the highest photo-thermal conversion in the diradicaloid field.imageFile | Dimensione | Formato | |
---|---|---|---|
Revised manuscript-IRIS.pdf
Open Access dal 01/09/2024
Descrizione: postprint
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.