CO2 hydrogenation to methanol has the potential to serve as a sustainable route to a wide variety of hydrocarbons, fuels and plastics in the quest for net zero. Synergistic Pd/In2O3 (Palldium on Indium Oxide) catalysts show high CO2 conversion and methanol selectivity, enhancing methanol yield. The identity of the optimal active site for this reaction is unclear, either as a Pd−In alloy, proximate metals, or distinct sites. In this work, we demonstrate that metal-efficient Pd/In2O3 species dispersed on Al2O3 can match the performance of pure Pd/In2O3 systems. Further, we follow the evolution of both Pd and In sites, and surface species, under operando reaction conditions using X-ray Absorption Spectroscpy (XAS) and infrared (IR) spectroscopy. In doing so, we can determine both the nature of the active sites and the influence on the catalytic mechanism.
Potter M.E., Mediavilla Madrigal S., Campbell E., Allen L.J., Vyas U., Parry S., et al. (2023). A High Pressure Operando Spectroscopy Examination of Bimetal Interactions in ‘Metal Efficient’ Palladium/In2O3/Al2O3 Catalysts for CO2 Hydrogenation. ANGEWANDTE CHEMIE, 62(45), 1-6 [10.1002/anie.202312645].
A High Pressure Operando Spectroscopy Examination of Bimetal Interactions in ‘Metal Efficient’ Palladium/In2O3/Al2O3 Catalysts for CO2 Hydrogenation
Schiaroli N.;Fornasari G.;Benito P.
;
2023
Abstract
CO2 hydrogenation to methanol has the potential to serve as a sustainable route to a wide variety of hydrocarbons, fuels and plastics in the quest for net zero. Synergistic Pd/In2O3 (Palldium on Indium Oxide) catalysts show high CO2 conversion and methanol selectivity, enhancing methanol yield. The identity of the optimal active site for this reaction is unclear, either as a Pd−In alloy, proximate metals, or distinct sites. In this work, we demonstrate that metal-efficient Pd/In2O3 species dispersed on Al2O3 can match the performance of pure Pd/In2O3 systems. Further, we follow the evolution of both Pd and In sites, and surface species, under operando reaction conditions using X-ray Absorption Spectroscpy (XAS) and infrared (IR) spectroscopy. In doing so, we can determine both the nature of the active sites and the influence on the catalytic mechanism.File | Dimensione | Formato | |
---|---|---|---|
Angew Chem Int Ed A High Pressure.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
4.19 MB
Formato
Adobe PDF
|
4.19 MB | Adobe PDF | Visualizza/Apri |
anie202312645-sup-0001-misc_information.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per accesso libero gratuito
Dimensione
3.07 MB
Formato
Adobe PDF
|
3.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.