Networks-on-Chip (NoC), being a system-level interconnect, can play a major role in achieving low-power SoC designs. In many designs, the cores are grouped in to Voltage Islands (VIs). To reduce the leakage power consumption, an island containing cores that are not used in an application can be shutdown, while the other islands can still be operational. When one or more of the islands are shutdown, the interconnect should allow the communication between islands that are operational. For this, the NoCs has to be designed efficiently to allow shutdown of VIs, thereby reducing the leakage power consumption. In this chapter, we present methods to design NoC topologies that provide such a support for both 2D and 3D ICs. We show how the concept of VIs need to be considered during topology synthesis phase itself. We also make studies to show the benefits of migrating to 3D-stacked chips for realistic applications that have multiple VIs.

C. Seiculescu, S. Murali, L. Benini, G. De Micheli (2011). Design and Analysis of NoCs for Low-Power 2D and 3D SoCs. BERLIN/HEIDELBERG : Springer [10.1007/978-1-4419-6911-8_8].

Design and Analysis of NoCs for Low-Power 2D and 3D SoCs

BENINI, LUCA;
2011

Abstract

Networks-on-Chip (NoC), being a system-level interconnect, can play a major role in achieving low-power SoC designs. In many designs, the cores are grouped in to Voltage Islands (VIs). To reduce the leakage power consumption, an island containing cores that are not used in an application can be shutdown, while the other islands can still be operational. When one or more of the islands are shutdown, the interconnect should allow the communication between islands that are operational. For this, the NoCs has to be designed efficiently to allow shutdown of VIs, thereby reducing the leakage power consumption. In this chapter, we present methods to design NoC topologies that provide such a support for both 2D and 3D ICs. We show how the concept of VIs need to be considered during topology synthesis phase itself. We also make studies to show the benefits of migrating to 3D-stacked chips for realistic applications that have multiple VIs.
2011
Low Power Networks-on-Chip
199
222
C. Seiculescu, S. Murali, L. Benini, G. De Micheli (2011). Design and Analysis of NoCs for Low-Power 2D and 3D SoCs. BERLIN/HEIDELBERG : Springer [10.1007/978-1-4419-6911-8_8].
C. Seiculescu; S. Murali; L. Benini; G. De Micheli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/94630
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact