The reaction of [Ru6C(CO)16]2- (1) with NaOH in DMSO resulted in the formation of a highly reduced [Ru6C(CO)15]4- (2), which was readily protonated by acids, such as HBF4·Et2O, to [HRu6C(CO)15]3- (3). Oxidation of 2 with [Cp2Fe][PF6] or [C7H7][BF4] in CH3CN resulted in [Ru6C(CO)15(CH3CN)]2- (5), which was quantitatively converted into 1 after exposure to CO atmosphere. The reaction of 2 with a mild methylating agent such as CH3,I afforded the purported [Ru6C(CO)14(COCH3)]3- (6). By employing a stronger reagent, that is, CF3SO3CH3, a mixture of [HRu6C(CO)16]− (4), [H3Ru6C(CO)15]− (7), and [Ru6C(CO)15(CH3CNCH3)]− (8) was obtained. The molecular structures of 2-5, 7, and 8 were determined by single-crystal X-ray diffraction as their [NEt4]4[2]·CH3CN, [NEt4]3[3], [NEt4][4], [NEt4]2[5], [NEt4][7], and [NEt4][8]·solv salts. The carbyne-carbide cluster 6 was partially characterized by IR spectroscopy and ESI-MS, and its structure was computationally predicted using DFT methods. The redox behavior of 2 and 3 was investigated by electrochemical and IR spectroelectrochemical methods. Computational studies were performed in order to unravel structural and thermodynamic aspects of these octahedral Ru-carbide carbonyl clusters displaying miscellaneous ligands and charges in comparison with related iron derivatives.

Highly Reduced Ruthenium Carbide Carbonyl Clusters: Synthesis, Molecular Structure, Reactivity, Electrochemistry, and Computational Investigation of [Ru6C(CO)15]4- / Cesari C.; Bortoluzzi M.; Funaioli T.; Femoni C.; Iapalucci M.C.; Zacchini S.. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - ELETTRONICO. - 62:36(2023), pp. 14590-14603. [10.1021/acs.inorgchem.3c01711]

Highly Reduced Ruthenium Carbide Carbonyl Clusters: Synthesis, Molecular Structure, Reactivity, Electrochemistry, and Computational Investigation of [Ru6C(CO)15]4-

Cesari C.
;
Femoni C.;Iapalucci M. C.;Zacchini S.
2023

Abstract

The reaction of [Ru6C(CO)16]2- (1) with NaOH in DMSO resulted in the formation of a highly reduced [Ru6C(CO)15]4- (2), which was readily protonated by acids, such as HBF4·Et2O, to [HRu6C(CO)15]3- (3). Oxidation of 2 with [Cp2Fe][PF6] or [C7H7][BF4] in CH3CN resulted in [Ru6C(CO)15(CH3CN)]2- (5), which was quantitatively converted into 1 after exposure to CO atmosphere. The reaction of 2 with a mild methylating agent such as CH3,I afforded the purported [Ru6C(CO)14(COCH3)]3- (6). By employing a stronger reagent, that is, CF3SO3CH3, a mixture of [HRu6C(CO)16]− (4), [H3Ru6C(CO)15]− (7), and [Ru6C(CO)15(CH3CNCH3)]− (8) was obtained. The molecular structures of 2-5, 7, and 8 were determined by single-crystal X-ray diffraction as their [NEt4]4[2]·CH3CN, [NEt4]3[3], [NEt4][4], [NEt4]2[5], [NEt4][7], and [NEt4][8]·solv salts. The carbyne-carbide cluster 6 was partially characterized by IR spectroscopy and ESI-MS, and its structure was computationally predicted using DFT methods. The redox behavior of 2 and 3 was investigated by electrochemical and IR spectroelectrochemical methods. Computational studies were performed in order to unravel structural and thermodynamic aspects of these octahedral Ru-carbide carbonyl clusters displaying miscellaneous ligands and charges in comparison with related iron derivatives.
2023
Highly Reduced Ruthenium Carbide Carbonyl Clusters: Synthesis, Molecular Structure, Reactivity, Electrochemistry, and Computational Investigation of [Ru6C(CO)15]4- / Cesari C.; Bortoluzzi M.; Funaioli T.; Femoni C.; Iapalucci M.C.; Zacchini S.. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - ELETTRONICO. - 62:36(2023), pp. 14590-14603. [10.1021/acs.inorgchem.3c01711]
Cesari C.; Bortoluzzi M.; Funaioli T.; Femoni C.; Iapalucci M.C.; Zacchini S.
File in questo prodotto:
File Dimensione Formato  
IC_2023_Ru6C.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.34 MB
Formato Adobe PDF
4.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/945653
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact