We establish a priori $L^\infty$-estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $0

Eleonora Cinti, Francesca Colasuonno (2023). Existence and non-existence results for a semilinear fractional Neumann problem. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 30(6), 1-20 [10.1007/s00030-023-00886-4].

Existence and non-existence results for a semilinear fractional Neumann problem

Eleonora Cinti;Francesca Colasuonno
2023

Abstract

We establish a priori $L^\infty$-estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $0
2023
Eleonora Cinti, Francesca Colasuonno (2023). Existence and non-existence results for a semilinear fractional Neumann problem. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 30(6), 1-20 [10.1007/s00030-023-00886-4].
Eleonora Cinti; Francesca Colasuonno
File in questo prodotto:
File Dimensione Formato  
published_NoDEA-s00030-023-00886-4.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 437.51 kB
Formato Adobe PDF
437.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/945613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact