In this paper we describe a methodology for parameter estimation of multivariate distributions defined as normal mean-variance mixture where the mixing random variable is rapidly decreasing tempered stable distributed. We address some numerical issues resulting from the use of the characteristic function for density approximation. We focus our attention on the practical implementation of numerical methods involving the use of these multivariate distributions in the field of finance and we empirical assess the proposed algorithm through an analysis on a five-dimensional series of stock index log-returns.

Bianchi, M.L., Tassinari, G.L. (2023). Estimation for multivariate normal rapidly decreasing tempered stable distributions. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 94(1), 103-125 [10.1080/00949655.2023.2232913].

Estimation for multivariate normal rapidly decreasing tempered stable distributions

Tassinari, GL
2023

Abstract

In this paper we describe a methodology for parameter estimation of multivariate distributions defined as normal mean-variance mixture where the mixing random variable is rapidly decreasing tempered stable distributed. We address some numerical issues resulting from the use of the characteristic function for density approximation. We focus our attention on the practical implementation of numerical methods involving the use of these multivariate distributions in the field of finance and we empirical assess the proposed algorithm through an analysis on a five-dimensional series of stock index log-returns.
2023
Bianchi, M.L., Tassinari, G.L. (2023). Estimation for multivariate normal rapidly decreasing tempered stable distributions. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 94(1), 103-125 [10.1080/00949655.2023.2232913].
Bianchi, ML; Tassinari, GL
File in questo prodotto:
File Dimensione Formato  
Estimation_for_multivariate.pdf

Open Access dal 18/07/2024

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 4.41 MB
Formato Adobe PDF
4.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/945259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact