Seafloor methane seepage is a significant source of carbon in the marine environment. The processes and temporal patterns of seafloor methane seepage over multi-million-year time scales are still poorly understood. The microbial oxidation of methane can store carbon in sediments through precipitation of carbonate minerals, thus providing a record of past methane emission. In this study, we compiled data on methane-derived carbonates to build a proxy time series of methane emission over the last 150 My and statistically compared it with the main hypothesised geological controllers of methane emission. We quantitatively demonstrate that variations in sea level and organic carbon burial are the dominant controls on methane leakage since the Early Cretaceous. Sea level controls methane seepage variations by imposing smooth trends on timescales in the order of tens of My. Organic carbon burial is affected by the same cyclicities, and instantaneously controls methane release because of the geologically rapid generation of biogenic methane. Both the identified fundamental (26-27 My) and higher (12 My) cyclicities relate to global phenomena. Temporal correlation analysis supports the evidence that modern expansion of hypoxic areas and its effect on organic carbon burial may lead to higher seawater methane concentrations over the coming centuries.

Oppo D., De Siena L., Kemp D.B. (2020). A record of seafloor methane seepage across the last 150 million years. SCIENTIFIC REPORTS, 10(1), 1-12 [10.1038/s41598-020-59431-3].

A record of seafloor methane seepage across the last 150 million years

De Siena L.;
2020

Abstract

Seafloor methane seepage is a significant source of carbon in the marine environment. The processes and temporal patterns of seafloor methane seepage over multi-million-year time scales are still poorly understood. The microbial oxidation of methane can store carbon in sediments through precipitation of carbonate minerals, thus providing a record of past methane emission. In this study, we compiled data on methane-derived carbonates to build a proxy time series of methane emission over the last 150 My and statistically compared it with the main hypothesised geological controllers of methane emission. We quantitatively demonstrate that variations in sea level and organic carbon burial are the dominant controls on methane leakage since the Early Cretaceous. Sea level controls methane seepage variations by imposing smooth trends on timescales in the order of tens of My. Organic carbon burial is affected by the same cyclicities, and instantaneously controls methane release because of the geologically rapid generation of biogenic methane. Both the identified fundamental (26-27 My) and higher (12 My) cyclicities relate to global phenomena. Temporal correlation analysis supports the evidence that modern expansion of hypoxic areas and its effect on organic carbon burial may lead to higher seawater methane concentrations over the coming centuries.
2020
Oppo D., De Siena L., Kemp D.B. (2020). A record of seafloor methane seepage across the last 150 million years. SCIENTIFIC REPORTS, 10(1), 1-12 [10.1038/s41598-020-59431-3].
Oppo D.; De Siena L.; Kemp D.B.
File in questo prodotto:
File Dimensione Formato  
Oppo2020.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri
41598_2020_59431_MOESM1_ESM.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/944890
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 30
social impact