In this paper we propose and study a continuous time stochastic model of optimal allocation for a defined contribution pension fund in the accumulation phase. The level of wealth is constrained to stay above a "solvency level". The fund manager can invest in a riskless asset and in a risky asset, but borrowing and short selling are prohibited. The model is naturally formulated as an optimal stochastic control problem with state constraints and is treated by the dynamic programming approach. We show that the value function of the problem is a continuous viscosity solution of the associated Hamilton-Jacobi-Bellman equation. In the special case when the boundary is absorbing we show that it is the unique viscosity solution of the Hamilton-Jacobi-Bellman equation.

federico, s. (2008). A pension fund in the accumulation phase: a stochastic control approach. Banach center publications.

A pension fund in the accumulation phase: a stochastic control approach

federico, salvatore
2008

Abstract

In this paper we propose and study a continuous time stochastic model of optimal allocation for a defined contribution pension fund in the accumulation phase. The level of wealth is constrained to stay above a "solvency level". The fund manager can invest in a riskless asset and in a risky asset, but borrowing and short selling are prohibited. The model is naturally formulated as an optimal stochastic control problem with state constraints and is treated by the dynamic programming approach. We show that the value function of the problem is a continuous viscosity solution of the associated Hamilton-Jacobi-Bellman equation. In the special case when the boundary is absorbing we show that it is the unique viscosity solution of the Hamilton-Jacobi-Bellman equation.
2008
Advances in mathematics of finance
61
83
federico, s. (2008). A pension fund in the accumulation phase: a stochastic control approach. Banach center publications.
federico, salvatore
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/944519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact