The paper considers a class of parametric elliptic partial differential equations (PDEs), where the coefficients and the right-hand side function depend on infinitely many (uncertain) parameters. We introduce a two-level a posteriori estimator to control the energy error in multilevel stochastic Galerkin approximations for this class of PDE problems. We prove that the two-level estimator always provides a lower bound for the unknown approximation error, while the upper bound is equivalent to a saturation assumption. We propose and empirically compare three adaptive algorithms, where the structure of the estimator is exploited to perform spatial refinement as well as parametric enrichment. The paper also discusses implementation aspects of computing multilevel stochastic Galerkin approximations.

Bespalov A., Praetorius D., Ruggeri M. (2021). Two-Level a posteriori error estimation for adaptive multilevel stochastic Galerkin finite element method. SIAM/ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 9(3), 1184-1216 [10.1137/20M1342586].

Two-Level a posteriori error estimation for adaptive multilevel stochastic Galerkin finite element method

Ruggeri M.
2021

Abstract

The paper considers a class of parametric elliptic partial differential equations (PDEs), where the coefficients and the right-hand side function depend on infinitely many (uncertain) parameters. We introduce a two-level a posteriori estimator to control the energy error in multilevel stochastic Galerkin approximations for this class of PDE problems. We prove that the two-level estimator always provides a lower bound for the unknown approximation error, while the upper bound is equivalent to a saturation assumption. We propose and empirically compare three adaptive algorithms, where the structure of the estimator is exploited to perform spatial refinement as well as parametric enrichment. The paper also discusses implementation aspects of computing multilevel stochastic Galerkin approximations.
2021
Bespalov A., Praetorius D., Ruggeri M. (2021). Two-Level a posteriori error estimation for adaptive multilevel stochastic Galerkin finite element method. SIAM/ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 9(3), 1184-1216 [10.1137/20M1342586].
Bespalov A.; Praetorius D.; Ruggeri M.
File in questo prodotto:
File Dimensione Formato  
bpr_juq.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.67 MB
Formato Adobe PDF
3.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/944119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact