Combining ideas from Alouges et al. (2014, A convergent and precise finite element scheme for Landau–Lifschitz–Gilbert equation. Numer. Math., 128, 407–430) and Praetorius et al. (2018, Convergence of an implicit-explicit midpoint scheme for computational micromagnetics. Comput. Math. Appl., 75, 1719–1738) we propose a numerical algorithm for the integration of the nonlinear and time-dependent Landau–Lifshitz–Gilbert (LLG) equation, which is unconditionally convergent, formally (almost) second-order in time, and requires the solution of only one linear system per time step. Only the exchange contribution is integrated implicitly in time, while the lower-order contributions like the computationally expensive stray field are treated explicitly in time. Then we extend the scheme to the coupled system of the LLG equation with the eddy current approximation of Maxwell equations. Unlike existing schemes for this system, the new integrator is unconditionally convergent, (almost) second-order in time, and requires the solution of only two linear systems per time step.

Di Fratta G., Pfeiler C.-M., Praetorius D., Ruggeri M., Stiftner B. (2020). Linear second-order IMEX-type integrator for the (eddy current) Landau–Lifshitz–Gilbert equation. IMA JOURNAL OF NUMERICAL ANALYSIS, 40(4), 2802-2838 [10.1093/imanum/drz046].

Linear second-order IMEX-type integrator for the (eddy current) Landau–Lifshitz–Gilbert equation

Ruggeri M.;
2020

Abstract

Combining ideas from Alouges et al. (2014, A convergent and precise finite element scheme for Landau–Lifschitz–Gilbert equation. Numer. Math., 128, 407–430) and Praetorius et al. (2018, Convergence of an implicit-explicit midpoint scheme for computational micromagnetics. Comput. Math. Appl., 75, 1719–1738) we propose a numerical algorithm for the integration of the nonlinear and time-dependent Landau–Lifshitz–Gilbert (LLG) equation, which is unconditionally convergent, formally (almost) second-order in time, and requires the solution of only one linear system per time step. Only the exchange contribution is integrated implicitly in time, while the lower-order contributions like the computationally expensive stray field are treated explicitly in time. Then we extend the scheme to the coupled system of the LLG equation with the eddy current approximation of Maxwell equations. Unlike existing schemes for this system, the new integrator is unconditionally convergent, (almost) second-order in time, and requires the solution of only two linear systems per time step.
2020
Di Fratta G., Pfeiler C.-M., Praetorius D., Ruggeri M., Stiftner B. (2020). Linear second-order IMEX-type integrator for the (eddy current) Landau–Lifshitz–Gilbert equation. IMA JOURNAL OF NUMERICAL ANALYSIS, 40(4), 2802-2838 [10.1093/imanum/drz046].
Di Fratta G.; Pfeiler C.-M.; Praetorius D.; Ruggeri M.; Stiftner B.
File in questo prodotto:
File Dimensione Formato  
Di_Fratta_etal_IMAJNA_2020_Linear_second_order_IMEX_type_integrator.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/944118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 11
social impact