In two companion papers we report the detailed geological and mineralogical study of two emblematic serpentinized ultramafic bodies of the western North Pyrenean Zone (NPZ), the Urdach massif (paper 1) and the Saraille massif (this paper). The peridotites have been uplifted to lower crustal levels during the Cretaceous rifting period in the future NPZ. They are associated with Mesozoic pre-rift metamorphic sediments and small units of thinned Paleozoic basement that were deformed during the mantle exhumation event. In the Saraille massif, both the pre-rift cover and the thin Paleozoic crustal lenses are involved in a Pyrenean recumbent fold having the serpentinized peridotites in its core. Based on detailed geological cross-sections microscopic observations and microprobe mineralogical analyses, we describe the lithology of the two major extensional fault zones that accommodated: (i) the progressive uplift of the lherzolites upward the Cretaceous basin axis, (ii) the lateral extraction of the continental crust beneath the rift margins and, (iii) the decoupling of the pre-rift cover along the Upper Triassic (Keuper) evaporites and clays, allowing its gliding and conservation in the basin center. These two fault zones are the (lower) crust-mantle detachment and the (upper) cover decollement located respectively at the crust-mantle boundary and at the base to the detached pre-rift cover. The Saraille peridotites were never exposed to the seafloor of the Cretaceous NPZ basins and always remained under a thin layer of crustal mylonites. Field constraints allow to reconstruct the strain pattern of the mantle rocks in the crust-mantle detachment. A 20-50 m thick layer of serpentinized lherzolites tectonic lenses separated by anastomosed shear zones is capped by a thin upper damage zone made up of strongly sheared talc-chlorite schists invaded by pyrite crystallization. The cover decollement is a few decameter-thick fault zone resulting from the brecciation of Upper Triassic layers. It underwent strong metasomatic alteration in the greenschist facies, by multi-component fluids leading to the crystallization of quartz, dolomite, talc, Cr-rich chlorite, amphiboles, magnesite and pyrite. These data collectively allow to propose a reconstruction of the architecture and fluid-rock interaction history of the distal domain of the upper Cretaceous northern Iberia margin now inverted in the NPZ.

Mantle exhumation at magma-poor passive continental margins. Part II: Tectonic and metasomatic evolution of large-displacement detachment faults preserved in a fossil distal margin domain (Saraill?? lherzolites, northwestern Pyrenees, France)

Riccardo Asti
Secondo
;
2019

Abstract

In two companion papers we report the detailed geological and mineralogical study of two emblematic serpentinized ultramafic bodies of the western North Pyrenean Zone (NPZ), the Urdach massif (paper 1) and the Saraille massif (this paper). The peridotites have been uplifted to lower crustal levels during the Cretaceous rifting period in the future NPZ. They are associated with Mesozoic pre-rift metamorphic sediments and small units of thinned Paleozoic basement that were deformed during the mantle exhumation event. In the Saraille massif, both the pre-rift cover and the thin Paleozoic crustal lenses are involved in a Pyrenean recumbent fold having the serpentinized peridotites in its core. Based on detailed geological cross-sections microscopic observations and microprobe mineralogical analyses, we describe the lithology of the two major extensional fault zones that accommodated: (i) the progressive uplift of the lherzolites upward the Cretaceous basin axis, (ii) the lateral extraction of the continental crust beneath the rift margins and, (iii) the decoupling of the pre-rift cover along the Upper Triassic (Keuper) evaporites and clays, allowing its gliding and conservation in the basin center. These two fault zones are the (lower) crust-mantle detachment and the (upper) cover decollement located respectively at the crust-mantle boundary and at the base to the detached pre-rift cover. The Saraille peridotites were never exposed to the seafloor of the Cretaceous NPZ basins and always remained under a thin layer of crustal mylonites. Field constraints allow to reconstruct the strain pattern of the mantle rocks in the crust-mantle detachment. A 20-50 m thick layer of serpentinized lherzolites tectonic lenses separated by anastomosed shear zones is capped by a thin upper damage zone made up of strongly sheared talc-chlorite schists invaded by pyrite crystallization. The cover decollement is a few decameter-thick fault zone resulting from the brecciation of Upper Triassic layers. It underwent strong metasomatic alteration in the greenschist facies, by multi-component fluids leading to the crystallization of quartz, dolomite, talc, Cr-rich chlorite, amphiboles, magnesite and pyrite. These data collectively allow to propose a reconstruction of the architecture and fluid-rock interaction history of the distal domain of the upper Cretaceous northern Iberia margin now inverted in the NPZ.
2019
Yves Lagabrielle; Riccardo Asti; Serge Fourcade; Benjamin Corre; Pierre Labaume; Jessica Uzel; Camille Clerc; Romain Lafay; Suzanne Picazo
File in questo prodotto:
File Dimensione Formato  
Lagabrielle et al., 2019b (Mantle exhumation at magma-poor passive continental margins. Part II. Saraillé)_compressed.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/943162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 6
social impact