Proprioceptive, Visual, Vestibular, and Cognitive systems interact in a continuous sensorial re-weighting, ensuring gaze and postural control (1, 2). The central nervous system integrates the information originating from these systems into a continuous sensorial re-weighting that ensures postural control in both static and dynamic conditions (3, 4). The contribution of each sensory system changes depending on environmental conditions and the motor task performed by the person (5–7). To tailor a rehabilitative program for patients with gaze and postural stability disorders, a multidimensional assessment is required. A wide range of both clinical and instrumental evaluations could be performed before the rehabilitative approach in order to obtain quantitative and qualitative information about the patient's balance and gait disorders, supporting the rehabilitative staff in designing the most suitable therapeutic intervention. Instrumental assessment of the vestibular system has made significant progress in recent years. Two protocol tests are available in the clinical practice to evaluate the Vestibular Ocular Reflex (VOR) function through the use of Video Head Impulse Test (vHIT): Head Impulse Paradigm (HIMP) and Suppression Head Impulse Paradigm (SHIMP) (8–10). The head turn stimulus and the eye movement recording are identical. All that is changed are the instructions—from “look at that fixed target on the wall” to “look at the moving target.” At the same time, vestibular-evoked myogenic potentials are the most suitable test to evaluate otolith functions in patients with unilateral vestibular hypofunction in the acute and sub-acute phases

Editorial: Gaze and postural stability rehabilitation / Manzari L.; Perez-Fernandez N.; Tramontano M.. - In: FRONTIERS IN NEUROLOGY. - ISSN 1664-2295. - ELETTRONICO. - 13:(2022), pp. 1034012.1034012-1034012.1034014. [10.3389/fneur.2022.1034012]

Editorial: Gaze and postural stability rehabilitation

Tramontano M.
2022

Abstract

Proprioceptive, Visual, Vestibular, and Cognitive systems interact in a continuous sensorial re-weighting, ensuring gaze and postural control (1, 2). The central nervous system integrates the information originating from these systems into a continuous sensorial re-weighting that ensures postural control in both static and dynamic conditions (3, 4). The contribution of each sensory system changes depending on environmental conditions and the motor task performed by the person (5–7). To tailor a rehabilitative program for patients with gaze and postural stability disorders, a multidimensional assessment is required. A wide range of both clinical and instrumental evaluations could be performed before the rehabilitative approach in order to obtain quantitative and qualitative information about the patient's balance and gait disorders, supporting the rehabilitative staff in designing the most suitable therapeutic intervention. Instrumental assessment of the vestibular system has made significant progress in recent years. Two protocol tests are available in the clinical practice to evaluate the Vestibular Ocular Reflex (VOR) function through the use of Video Head Impulse Test (vHIT): Head Impulse Paradigm (HIMP) and Suppression Head Impulse Paradigm (SHIMP) (8–10). The head turn stimulus and the eye movement recording are identical. All that is changed are the instructions—from “look at that fixed target on the wall” to “look at the moving target.” At the same time, vestibular-evoked myogenic potentials are the most suitable test to evaluate otolith functions in patients with unilateral vestibular hypofunction in the acute and sub-acute phases
2022
Editorial: Gaze and postural stability rehabilitation / Manzari L.; Perez-Fernandez N.; Tramontano M.. - In: FRONTIERS IN NEUROLOGY. - ISSN 1664-2295. - ELETTRONICO. - 13:(2022), pp. 1034012.1034012-1034012.1034014. [10.3389/fneur.2022.1034012]
Manzari L.; Perez-Fernandez N.; Tramontano M.
File in questo prodotto:
File Dimensione Formato  
fneur-13-1034012.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 100.14 kB
Formato Adobe PDF
100.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/942505
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact