Context. The Galactic center is the closest region where we can study star formation under extreme physical conditions like those in high-redshift galaxies.Aims. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it.Methods. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H2CO) transitions. We used the 3(2,1)-2(2,0)/3(0,3)-2(0,2) line ratio to determine the gas temperature in n similar to 10(4) - 10(5) cm(-3) gas. We have produced temperature maps and cubes with 30 0 0 and 1 km s(-1) resolution and published all data in FITS form.Results. Dense gas temperatures in the Galactic center range from similar to 60 K to > 100 K in selected regions. The highest gas temperatures T-G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km s(-1) and 50 km s(-1) clouds, and in "The Brick" (G0.253 + 0.016). We infer an upper limit on the cosmic ray ionization rate zeta(CR) < 10(-14) s(-1).Conclusions. The dense molecular gas temperature of the region around our Galactic center is similar to values found in the central regions of other galaxies, in particular starburst systems. The gas temperature is uniformly higher than the dust temperature, confirming that dust is a coolant in the dense gas. Turbulent heating can readily explain the observed temperatures given the observed line widths. Cosmic rays cannot explain the observed variation in gas temperatures, so CMZ dense gas temperatures are not dominated by cosmic ray heating. The gas temperatures previously observed to be high in the inner similar to 75 pc are confirmed to be high in the entire CMZ.

Adam Ginsburg, Christian Henkel, Yiping Ao, Denise Riquelme, Jens Kauffmann, Thushara Pillai, et al. (2016). Dense gas in the Galactic central molecular zone is warm and heated by turbulence. ASTRONOMY & ASTROPHYSICS, 586, 50-80 [10.1051/0004-6361/201526100].

Dense gas in the Galactic central molecular zone is warm and heated by turbulence

Leonardo Testi;
2016

Abstract

Context. The Galactic center is the closest region where we can study star formation under extreme physical conditions like those in high-redshift galaxies.Aims. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it.Methods. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H2CO) transitions. We used the 3(2,1)-2(2,0)/3(0,3)-2(0,2) line ratio to determine the gas temperature in n similar to 10(4) - 10(5) cm(-3) gas. We have produced temperature maps and cubes with 30 0 0 and 1 km s(-1) resolution and published all data in FITS form.Results. Dense gas temperatures in the Galactic center range from similar to 60 K to > 100 K in selected regions. The highest gas temperatures T-G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km s(-1) and 50 km s(-1) clouds, and in "The Brick" (G0.253 + 0.016). We infer an upper limit on the cosmic ray ionization rate zeta(CR) < 10(-14) s(-1).Conclusions. The dense molecular gas temperature of the region around our Galactic center is similar to values found in the central regions of other galaxies, in particular starburst systems. The gas temperature is uniformly higher than the dust temperature, confirming that dust is a coolant in the dense gas. Turbulent heating can readily explain the observed temperatures given the observed line widths. Cosmic rays cannot explain the observed variation in gas temperatures, so CMZ dense gas temperatures are not dominated by cosmic ray heating. The gas temperatures previously observed to be high in the inner similar to 75 pc are confirmed to be high in the entire CMZ.
2016
Adam Ginsburg, Christian Henkel, Yiping Ao, Denise Riquelme, Jens Kauffmann, Thushara Pillai, et al. (2016). Dense gas in the Galactic central molecular zone is warm and heated by turbulence. ASTRONOMY & ASTROPHYSICS, 586, 50-80 [10.1051/0004-6361/201526100].
Adam Ginsburg; Christian Henkel; Yiping Ao; Denise Riquelme; Jens Kauffmann; Thushara Pillai; Elisabeth A. C. Mills; Miguel A. Requena-Torres; Kathari...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/942002
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 171
  • ???jsp.display-item.citation.isi??? 149
social impact