We present high spatial resolution observations of the continuum emission from the young multiple star system UZ Tau at frequencies from 6 to 340 GHz. To quantify the spatial variation of dust emission in the UZ Tau E circumbinary disk, the observed interferometric visibilities are modeled with a simple parametric prescription for the radial surface brightnesses at each frequency. We find evidence that the spectrum steepens with radius in the disk, manifested as a positive correlation between the observing frequency and the radius that encircles a fixed fraction of the emission (R-eff proportional to nu(0.34 +/- 0.08)). The origins of this size-frequency relation are explored in the context of a theoretical framework for the growth and migration of disk solids. While that framework can reproduce a similar size-frequency relation, it predicts a steeper spectrum than that observed. Moreover, it comes closest to matching the data only on timescales much shorter (<= 1 Myr) than the putative UZ Tau age (similar to 2-3 Myr). These discrepancies are direct consequences of the rapid radial drift rates predicted by models of dust evolution in a smooth gas disk. One way to mitigate that efficiency problem is to invoke small-scale gas pressure modulations that locally concentrate drifting solids. If such particle traps reach high-continuum optical depths at 30-340 GHz with a similar to 30%-60%. filling fraction in the inner disk (r less than or similar to 20 au), they can also explain the observed spatial gradient in the UZ Tau E disk spectrum.

Anjali Tripathi, Sean M. Andrews, Tilman Birnstiel, Claire J. Chandler, Andrea Isella, Laura M. Pérez, et al. (2018). The Millimeter Continuum Size–Frequency Relationship in the UZ Tau E Disk. THE ASTROPHYSICAL JOURNAL, 861(1), 64-76 [10.3847/1538-4357/aac5d6].

The Millimeter Continuum Size–Frequency Relationship in the UZ Tau E Disk

L. Testi
2018

Abstract

We present high spatial resolution observations of the continuum emission from the young multiple star system UZ Tau at frequencies from 6 to 340 GHz. To quantify the spatial variation of dust emission in the UZ Tau E circumbinary disk, the observed interferometric visibilities are modeled with a simple parametric prescription for the radial surface brightnesses at each frequency. We find evidence that the spectrum steepens with radius in the disk, manifested as a positive correlation between the observing frequency and the radius that encircles a fixed fraction of the emission (R-eff proportional to nu(0.34 +/- 0.08)). The origins of this size-frequency relation are explored in the context of a theoretical framework for the growth and migration of disk solids. While that framework can reproduce a similar size-frequency relation, it predicts a steeper spectrum than that observed. Moreover, it comes closest to matching the data only on timescales much shorter (<= 1 Myr) than the putative UZ Tau age (similar to 2-3 Myr). These discrepancies are direct consequences of the rapid radial drift rates predicted by models of dust evolution in a smooth gas disk. One way to mitigate that efficiency problem is to invoke small-scale gas pressure modulations that locally concentrate drifting solids. If such particle traps reach high-continuum optical depths at 30-340 GHz with a similar to 30%-60%. filling fraction in the inner disk (r less than or similar to 20 au), they can also explain the observed spatial gradient in the UZ Tau E disk spectrum.
2018
Anjali Tripathi, Sean M. Andrews, Tilman Birnstiel, Claire J. Chandler, Andrea Isella, Laura M. Pérez, et al. (2018). The Millimeter Continuum Size–Frequency Relationship in the UZ Tau E Disk. THE ASTROPHYSICAL JOURNAL, 861(1), 64-76 [10.3847/1538-4357/aac5d6].
Anjali Tripathi; Sean M. Andrews; Tilman Birnstiel; Claire J. Chandler; Andrea Isella; Laura M. Pérez; R. J. Harris; Luca Ricci; David J. Wilner; John...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/941884
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 24
social impact