The fractionation of nitrogen (N) in star-forming regions is a poorly understood process. To put more stringent observational constraints on the N-fractionation, we have observed with the IRAM-30-m telescope a large sample of 66 cores in massive star-forming regions. We targeted the (1-0) rotational transition of HN13C, HC15N, H13CN and HC15N, and derived the 14N/15N ratio for both HCN and HNC. We have completed this sample with that already observed by Colzi et al., and thus analysed a total sample of 87 sources. The 14N/15N ratios are distributed around the Proto-Solar Nebula value with a lower limit near the TA value (∼272). We have also derived the 14N/15N ratio as a function of the Galactocentric distance and deduced a linear trend based on unprecedented statistics. The Galactocentric dependences that we have found are consistent, in the slope, with past works but we have found a new local 14N/15N value of ∼400, i.e. closer to the Prosolar Nebula value. A second analysis was done, and a parabolic Galactocentric trend was found. Comparison with Galactic chemical evolution models shows that the slope until 8 kpc is consistent with the linear analysis, while the flattening trend above 8 kpc is well reproduced by the parabolic analysis.

Colzi, L., FONTANI, F., RIVILLA RODRIGUEZ, V.M., Sánchez-Monge, A., TESTI, L., BELTRAN SOROLLA, M.T., et al. (2018). Nitrogen fractionation in high-mass star-forming cores across the Galaxy. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 478(3), 3693-3724 [10.1093/mnras/sty1027].

Nitrogen fractionation in high-mass star-forming cores across the Galaxy

TESTI, Leonardo;
2018

Abstract

The fractionation of nitrogen (N) in star-forming regions is a poorly understood process. To put more stringent observational constraints on the N-fractionation, we have observed with the IRAM-30-m telescope a large sample of 66 cores in massive star-forming regions. We targeted the (1-0) rotational transition of HN13C, HC15N, H13CN and HC15N, and derived the 14N/15N ratio for both HCN and HNC. We have completed this sample with that already observed by Colzi et al., and thus analysed a total sample of 87 sources. The 14N/15N ratios are distributed around the Proto-Solar Nebula value with a lower limit near the TA value (∼272). We have also derived the 14N/15N ratio as a function of the Galactocentric distance and deduced a linear trend based on unprecedented statistics. The Galactocentric dependences that we have found are consistent, in the slope, with past works but we have found a new local 14N/15N value of ∼400, i.e. closer to the Prosolar Nebula value. A second analysis was done, and a parabolic Galactocentric trend was found. Comparison with Galactic chemical evolution models shows that the slope until 8 kpc is consistent with the linear analysis, while the flattening trend above 8 kpc is well reproduced by the parabolic analysis.
2018
Colzi, L., FONTANI, F., RIVILLA RODRIGUEZ, V.M., Sánchez-Monge, A., TESTI, L., BELTRAN SOROLLA, M.T., et al. (2018). Nitrogen fractionation in high-mass star-forming cores across the Galaxy. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 478(3), 3693-3724 [10.1093/mnras/sty1027].
Colzi, L.; FONTANI, FRANCESCO; RIVILLA RODRIGUEZ, VICTOR MANUEL; Sánchez-Monge, A.; TESTI, Leonardo; BELTRAN SOROLLA, MARIA TERESA; Caselli, P....espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/941880
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact