The intensification of anomalous events of seawater warming and the co-occurrence with local anthropogenic stressors are threatening coastal marine habitats, including seagrasses, which form extensive underwater meadows. Eutrophication highly affects coastal environments, potentially summing up to the widespread effects of global climate changes. In the present study, we investigated for the first time in seagrasses, the transcriptional response of different plant organs (i.e., leaf and shoot apical meristem, SAM) of the Mediterranean seagrass Posidonia oceanica growing in environments with a different history of nutrient enrichment. To this end, a mesocosm experiment exposing plants to single (nutrient enrichment or temperature increase) and multiple stressors (nutrient enrichment plus temperature increase), was performed. Results revealed a differential transcriptome regulation of plants under single and multiple stressors, showing an organ-specific sensitivity depending on plants' origin. While leaf tissues were more responsive to nutrient stress, SAM revealed a higher sensitivity to temperature treatments, especially in plants already impacted in their native environment. The exposure to stress conditions induced the modulation of different biological processes. Plants living in an oligotrophic environment were more responsive to nutrients compared to plants from a eutrophic environment. Evidences that epigenetic mechanisms were involved in the regulation of transcriptional reprogramming were also observed in both plants’ organs. These results represent a further step in the comprehension of seagrass response to abiotic stressors pointing out the importance of local pressures in a global warming scenario.

Pazzaglia J., Santillan-Sarmiento A., Ruocco M., Dattolo E., Ambrosino L., Marin-Guirao L., et al. (2022). Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess. ENVIRONMENTAL POLLUTION, 303, 1-13 [10.1016/j.envpol.2022.119077].

Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess

Ruocco M.;
2022

Abstract

The intensification of anomalous events of seawater warming and the co-occurrence with local anthropogenic stressors are threatening coastal marine habitats, including seagrasses, which form extensive underwater meadows. Eutrophication highly affects coastal environments, potentially summing up to the widespread effects of global climate changes. In the present study, we investigated for the first time in seagrasses, the transcriptional response of different plant organs (i.e., leaf and shoot apical meristem, SAM) of the Mediterranean seagrass Posidonia oceanica growing in environments with a different history of nutrient enrichment. To this end, a mesocosm experiment exposing plants to single (nutrient enrichment or temperature increase) and multiple stressors (nutrient enrichment plus temperature increase), was performed. Results revealed a differential transcriptome regulation of plants under single and multiple stressors, showing an organ-specific sensitivity depending on plants' origin. While leaf tissues were more responsive to nutrient stress, SAM revealed a higher sensitivity to temperature treatments, especially in plants already impacted in their native environment. The exposure to stress conditions induced the modulation of different biological processes. Plants living in an oligotrophic environment were more responsive to nutrients compared to plants from a eutrophic environment. Evidences that epigenetic mechanisms were involved in the regulation of transcriptional reprogramming were also observed in both plants’ organs. These results represent a further step in the comprehension of seagrass response to abiotic stressors pointing out the importance of local pressures in a global warming scenario.
2022
Pazzaglia J., Santillan-Sarmiento A., Ruocco M., Dattolo E., Ambrosino L., Marin-Guirao L., et al. (2022). Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess. ENVIRONMENTAL POLLUTION, 303, 1-13 [10.1016/j.envpol.2022.119077].
Pazzaglia J.; Santillan-Sarmiento A.; Ruocco M.; Dattolo E.; Ambrosino L.; Marin-Guirao L.; Procaccini G.
File in questo prodotto:
File Dimensione Formato  
Local environment modulates whole-transcriptome expression in the seagrass.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/941625
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact