Nonstabilizerness, also known as magic, quantifies the number of non-Clifford operations needed to prepare a quantum state. As typical measures either involve minimization procedures or a computational cost exponential in the number of qubits N, it is notoriously hard to characterize for many-body states. In this paper, we show that nonstabilizerness, as quantified by the recently introduced stabilizer Renyi entropies (SREs), can be computed efficiently for matrix product states (MPSs). Specifically, given an MPS of bond dimension chi and integer Renyi index n > 1, we show that the SRE can be expressed in terms of the norm of an MPS with bond dimension chi 2n. For translation-invariant states, this allows us to extract it from a single tensor, the transfer matrix, while for generic MPSs this construction yields a computational cost linear in N and polynomial in chi. We exploit this observation to revisit the study of ground-state nonstabilizerness in the quantum Ising chain, providing accurate numerical results up to large system sizes. We analyze the SRE near criticality and investigate its dependence on the local computational basis, showing that it is, in general, not maximal at the critical point.
Tobias Haug, Lorenzo Piroli (2023). Quantifying nonstabilizerness of matrix product states. PHYSICAL REVIEW. B, 107(3), 035148-1-035148-10 [10.1103/PhysRevB.107.035148].
Quantifying nonstabilizerness of matrix product states
Lorenzo PiroliUltimo
2023
Abstract
Nonstabilizerness, also known as magic, quantifies the number of non-Clifford operations needed to prepare a quantum state. As typical measures either involve minimization procedures or a computational cost exponential in the number of qubits N, it is notoriously hard to characterize for many-body states. In this paper, we show that nonstabilizerness, as quantified by the recently introduced stabilizer Renyi entropies (SREs), can be computed efficiently for matrix product states (MPSs). Specifically, given an MPS of bond dimension chi and integer Renyi index n > 1, we show that the SRE can be expressed in terms of the norm of an MPS with bond dimension chi 2n. For translation-invariant states, this allows us to extract it from a single tensor, the transfer matrix, while for generic MPSs this construction yields a computational cost linear in N and polynomial in chi. We exploit this observation to revisit the study of ground-state nonstabilizerness in the quantum Ising chain, providing accurate numerical results up to large system sizes. We analyze the SRE near criticality and investigate its dependence on the local computational basis, showing that it is, in general, not maximal at the critical point.File | Dimensione | Formato | |
---|---|---|---|
Haug and Piroli - 2023 - Quantifying nonstabilizerness of matrix product st.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.