Nonstabilizerness, also known as magic, quantifies the number of non-Clifford operations needed to prepare a quantum state. As typical measures either involve minimization procedures or a computational cost exponential in the number of qubits N, it is notoriously hard to characterize for many-body states. In this paper, we show that nonstabilizerness, as quantified by the recently introduced stabilizer Renyi entropies (SREs), can be computed efficiently for matrix product states (MPSs). Specifically, given an MPS of bond dimension chi and integer Renyi index n > 1, we show that the SRE can be expressed in terms of the norm of an MPS with bond dimension chi 2n. For translation-invariant states, this allows us to extract it from a single tensor, the transfer matrix, while for generic MPSs this construction yields a computational cost linear in N and polynomial in chi. We exploit this observation to revisit the study of ground-state nonstabilizerness in the quantum Ising chain, providing accurate numerical results up to large system sizes. We analyze the SRE near criticality and investigate its dependence on the local computational basis, showing that it is, in general, not maximal at the critical point.

Quantifying nonstabilizerness of matrix product states / Tobias Haug; Lorenzo Piroli. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - ELETTRONICO. - 107:3(2023), pp. 035148.035148-1-035148.035148-10. [10.1103/PhysRevB.107.035148]

Quantifying nonstabilizerness of matrix product states

Lorenzo Piroli
Ultimo
2023

Abstract

Nonstabilizerness, also known as magic, quantifies the number of non-Clifford operations needed to prepare a quantum state. As typical measures either involve minimization procedures or a computational cost exponential in the number of qubits N, it is notoriously hard to characterize for many-body states. In this paper, we show that nonstabilizerness, as quantified by the recently introduced stabilizer Renyi entropies (SREs), can be computed efficiently for matrix product states (MPSs). Specifically, given an MPS of bond dimension chi and integer Renyi index n > 1, we show that the SRE can be expressed in terms of the norm of an MPS with bond dimension chi 2n. For translation-invariant states, this allows us to extract it from a single tensor, the transfer matrix, while for generic MPSs this construction yields a computational cost linear in N and polynomial in chi. We exploit this observation to revisit the study of ground-state nonstabilizerness in the quantum Ising chain, providing accurate numerical results up to large system sizes. We analyze the SRE near criticality and investigate its dependence on the local computational basis, showing that it is, in general, not maximal at the critical point.
2023
Quantifying nonstabilizerness of matrix product states / Tobias Haug; Lorenzo Piroli. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - ELETTRONICO. - 107:3(2023), pp. 035148.035148-1-035148.035148-10. [10.1103/PhysRevB.107.035148]
Tobias Haug; Lorenzo Piroli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/941562
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact