We study the statistics of large deviations of the intensive work done in an interaction quench of a one-dimensional Bose gas with a large number N of particles, system size L, and fixed density. We consider the case in which the system is initially prepared in the noninteracting ground state and a repulsive interaction is suddenly turned on. For large deviations of the work below its mean value, we show that the large-deviation principle holds by means of the quench action approach. Using the latter, we compute exactly the so-called rate function and study its properties analytically. In particular, we find that fluctuations close to the mean value of the work exhibit a marked non-Gaussian behavior, even though their probability is always exponentially suppressed below it as L increases. Deviations larger than the mean value exhibit an algebraic decay whose exponent cannot be determined directly by large-deviation theory. Exploiting the exact Bethe ansatz representation of the eigenstates of the Hamiltonian, we calculate this exponent for vanishing particle density. Our approach can be straightforwardly generalized to quantum quenches in other interacting integrable systems.

Gabriele Perfetto, Lorenzo Piroli, Andrea Gambassi (2019). Quench action and large deviations: Work statistics in the one-dimensional Bose gas. PHYSICAL REVIEW. E, 100(3), 032114-1-032114-20 [10.1103/physreve.100.032114].

Quench action and large deviations: Work statistics in the one-dimensional Bose gas

Lorenzo Piroli;
2019

Abstract

We study the statistics of large deviations of the intensive work done in an interaction quench of a one-dimensional Bose gas with a large number N of particles, system size L, and fixed density. We consider the case in which the system is initially prepared in the noninteracting ground state and a repulsive interaction is suddenly turned on. For large deviations of the work below its mean value, we show that the large-deviation principle holds by means of the quench action approach. Using the latter, we compute exactly the so-called rate function and study its properties analytically. In particular, we find that fluctuations close to the mean value of the work exhibit a marked non-Gaussian behavior, even though their probability is always exponentially suppressed below it as L increases. Deviations larger than the mean value exhibit an algebraic decay whose exponent cannot be determined directly by large-deviation theory. Exploiting the exact Bethe ansatz representation of the eigenstates of the Hamiltonian, we calculate this exponent for vanishing particle density. Our approach can be straightforwardly generalized to quantum quenches in other interacting integrable systems.
2019
Gabriele Perfetto, Lorenzo Piroli, Andrea Gambassi (2019). Quench action and large deviations: Work statistics in the one-dimensional Bose gas. PHYSICAL REVIEW. E, 100(3), 032114-1-032114-20 [10.1103/physreve.100.032114].
Gabriele Perfetto; Lorenzo Piroli; Andrea Gambassi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/941542
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact