This document summarises proposed searches for new physics accessible in the heavy-ion mode at the CERN Large Hadron Collider (LHC), both through hadronic and ultraperipheral γγ interactions, and that have a competitive or, even, unique discovery potential compared to standard proton-proton collision studies. Illustrative examples include searches for new particles - such as axion-like pseudoscalars, radions, magnetic monopoles, new long-lived particles, dark photons, and sexaquarks as dark matter candidates - as well as new interactions, such as nonlinear or non-commutative QED extensions. We argue that such interesting possibilities constitute a well-justified scientific motivation, complementing standard quark-gluon-plasma physics studies, to continue running with ions at the LHC after the Run-4, i.e. beyond 2030, including light and intermediate-mass ion species, accumulating nucleon-nucleon integrated luminosities in the accessible fb-1 range per month.
New physics searches with heavy-ion collisions at the CERN Large Hadron Collider
Lucente M.;
2020
Abstract
This document summarises proposed searches for new physics accessible in the heavy-ion mode at the CERN Large Hadron Collider (LHC), both through hadronic and ultraperipheral γγ interactions, and that have a competitive or, even, unique discovery potential compared to standard proton-proton collision studies. Illustrative examples include searches for new particles - such as axion-like pseudoscalars, radions, magnetic monopoles, new long-lived particles, dark photons, and sexaquarks as dark matter candidates - as well as new interactions, such as nonlinear or non-commutative QED extensions. We argue that such interesting possibilities constitute a well-justified scientific motivation, complementing standard quark-gluon-plasma physics studies, to continue running with ions at the LHC after the Run-4, i.e. beyond 2030, including light and intermediate-mass ion species, accumulating nucleon-nucleon integrated luminosities in the accessible fb-1 range per month.File | Dimensione | Formato | |
---|---|---|---|
Bruce_2020_J._Phys._G:_Nucl._Part._Phys._47_060501.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
838.31 kB
Formato
Adobe PDF
|
838.31 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.