Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory compactifications, we combine machine learning and algebraic geometry techniques to analyze line bundle cohomologies on families of holomorphic curves. To quantify jumps of these cohomologies, we first generate 1.8 million pairs of line bundles and curves embedded in dP(3), for which we compute the cohomologies. A white-box machine learning approach trained on this data provides intuition for jumps due to curve splittings, which we use to construct additional vector-like Higgs-pairs in an F-Theory toy model. We also find that, in order to explain quantitatively the full dataset, further tools from algebraic geometry, in particular Brill-Noether theory, are required. Using these ingredients, we introduce a diagrammatic way to express cohomology jumps across the parameter space of each family of matter curves, which reflects a stratification of the F-theory complex structure moduli space in terms of the vector-like spectrum. Furthermore, these insights provide an algorithmically efficient way to estimate the possible cohomology dimensions across the entire parameter space.

Bies, M., Cveti\v{c}, M., Donagi, R., Lin, L., Liu, M., Ruehle, F. (2020). Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory. JOURNAL OF HIGH ENERGY PHYSICS, 2021(1), 1-69 [10.1007/JHEP01(2021)196].

Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory

Lin, Ling;
2020

Abstract

Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory compactifications, we combine machine learning and algebraic geometry techniques to analyze line bundle cohomologies on families of holomorphic curves. To quantify jumps of these cohomologies, we first generate 1.8 million pairs of line bundles and curves embedded in dP(3), for which we compute the cohomologies. A white-box machine learning approach trained on this data provides intuition for jumps due to curve splittings, which we use to construct additional vector-like Higgs-pairs in an F-Theory toy model. We also find that, in order to explain quantitatively the full dataset, further tools from algebraic geometry, in particular Brill-Noether theory, are required. Using these ingredients, we introduce a diagrammatic way to express cohomology jumps across the parameter space of each family of matter curves, which reflects a stratification of the F-theory complex structure moduli space in terms of the vector-like spectrum. Furthermore, these insights provide an algorithmically efficient way to estimate the possible cohomology dimensions across the entire parameter space.
2020
Bies, M., Cveti\v{c}, M., Donagi, R., Lin, L., Liu, M., Ruehle, F. (2020). Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory. JOURNAL OF HIGH ENERGY PHYSICS, 2021(1), 1-69 [10.1007/JHEP01(2021)196].
Bies, Martin; Cveti\v{c}, Mirjam; Donagi, Ron; Lin, Ling; Liu, Muyang; Ruehle, Fabian
File in questo prodotto:
File Dimensione Formato  
JHEP01(2021)196.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 893.94 kB
Formato Adobe PDF
893.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/941500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact