: In this study, we propose a Convolutional Neural Network (CNN) with an assembly of non-linear fully connected layers for estimating body height and weight using a limited amount of data. This method can predict the parameters within acceptable clinical limits for most of the cases even when trained with limited data.

Ganesan, R., La Mattina, A.A., Van De Vosse, F.N., Huberts, W. (2023). Deep Learning Method for Estimation of Morphological Parameters Based on CT Scans. Amsterdam : IOS Press [10.3233/SHTI230142].

Deep Learning Method for Estimation of Morphological Parameters Based on CT Scans

La Mattina A. A.;
2023

Abstract

: In this study, we propose a Convolutional Neural Network (CNN) with an assembly of non-linear fully connected layers for estimating body height and weight using a limited amount of data. This method can predict the parameters within acceptable clinical limits for most of the cases even when trained with limited data.
2023
Caring is Sharing : Exploiting the Value in Data for Health and Innovation. Proceedings of MIE 2023
364
365
Ganesan, R., La Mattina, A.A., Van De Vosse, F.N., Huberts, W. (2023). Deep Learning Method for Estimation of Morphological Parameters Based on CT Scans. Amsterdam : IOS Press [10.3233/SHTI230142].
Ganesan, R.; La Mattina, A. A.; Van De Vosse, F. N.; Huberts, W.
File in questo prodotto:
File Dimensione Formato  
Ganesan et al_2023_Deep Learning Method for Estimation of Morphological Parameters Based on CT.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 211.12 kB
Formato Adobe PDF
211.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/940860
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact