: In this study, we propose a Convolutional Neural Network (CNN) with an assembly of non-linear fully connected layers for estimating body height and weight using a limited amount of data. This method can predict the parameters within acceptable clinical limits for most of the cases even when trained with limited data.

Ganesan R., La Mattina A.A., Van De Vosse F.N., Huberts W. (2023). Deep Learning Method for Estimation of Morphological Parameters Based on CT Scans [10.3233/SHTI230142].

Deep Learning Method for Estimation of Morphological Parameters Based on CT Scans

La Mattina A. A.;
2023

Abstract

: In this study, we propose a Convolutional Neural Network (CNN) with an assembly of non-linear fully connected layers for estimating body height and weight using a limited amount of data. This method can predict the parameters within acceptable clinical limits for most of the cases even when trained with limited data.
2023
Caring is Sharing – Exploiting the Value in Data for Health and Innovation
364
365
Ganesan R., La Mattina A.A., Van De Vosse F.N., Huberts W. (2023). Deep Learning Method for Estimation of Morphological Parameters Based on CT Scans [10.3233/SHTI230142].
Ganesan R.; La Mattina A.A.; Van De Vosse F.N.; Huberts W.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/940860
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact