: In this study, we propose a Convolutional Neural Network (CNN) with an assembly of non-linear fully connected layers for estimating body height and weight using a limited amount of data. This method can predict the parameters within acceptable clinical limits for most of the cases even when trained with limited data.
Ganesan, R., La Mattina, A.A., Van De Vosse, F.N., Huberts, W. (2023). Deep Learning Method for Estimation of Morphological Parameters Based on CT Scans. Amsterdam : IOS Press [10.3233/SHTI230142].
Deep Learning Method for Estimation of Morphological Parameters Based on CT Scans
La Mattina A. A.;
2023
Abstract
: In this study, we propose a Convolutional Neural Network (CNN) with an assembly of non-linear fully connected layers for estimating body height and weight using a limited amount of data. This method can predict the parameters within acceptable clinical limits for most of the cases even when trained with limited data.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Ganesan et al_2023_Deep Learning Method for Estimation of Morphological Parameters Based on CT.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
211.12 kB
Formato
Adobe PDF
|
211.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


