Sn and Ga doped zeolite Y catalysts were tested for the isomerization of glucose to fructose carried out in different solvents (water, methanol and ethanol). Therein, ethanol favoured a Lewis acid site catalyzed pathway that promotes glucose isomerization to fructose, whereas methanol resulted in an equal distribution of products (mannose, fructose and alkyl fructoside). In contrast, the catalysts were totally inactive in water solvent. NMR relaxation measurements, including solvent displacement experiments, suggested that the lack of catalytic activity in water is due to the strong adsorption of this solvent within the zeolite pores blocking reactants from the Lewis acid sites active for the sugar isomerization. In comparison, ethanol adsorbs relatively more strongly than methanol, hence is retained in the pores where solvated fructose is preferentially prevented from the further reaction on Bronsted acid sites situated outside of the pore space. NMR relaxation measurements using pyridine and tetrahydrofuran (THF) and pyridine-DRIFTS measurements suggest metal doping had little effect on the overall relative acid strength of the zeolites but resulted in zeolites with increased Lewis acid strength relative to the non-doped zeolites. The results reported provide direct experimental evidence on the importance of adsorption properties of solvents within zeolites used for glucose to fructose isomerization and may serve as a starting point for a new approach towards designing and optimizing such catalytic systems. & COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Forster L., Kashbor M.M.M., Railton J., Chansai S., Hardacre C., Conte M., et al. (2023). Low-field 2D NMR relaxation and DRIFTS studies of glucose isomerization in zeolite Y: New insights into adsorption effects on catalytic performance. JOURNAL OF CATALYSIS, 425, 269-285 [10.1016/j.jcat.2023.06.021].

Low-field 2D NMR relaxation and DRIFTS studies of glucose isomerization in zeolite Y: New insights into adsorption effects on catalytic performance

D'Agostino C.
Ultimo
2023

Abstract

Sn and Ga doped zeolite Y catalysts were tested for the isomerization of glucose to fructose carried out in different solvents (water, methanol and ethanol). Therein, ethanol favoured a Lewis acid site catalyzed pathway that promotes glucose isomerization to fructose, whereas methanol resulted in an equal distribution of products (mannose, fructose and alkyl fructoside). In contrast, the catalysts were totally inactive in water solvent. NMR relaxation measurements, including solvent displacement experiments, suggested that the lack of catalytic activity in water is due to the strong adsorption of this solvent within the zeolite pores blocking reactants from the Lewis acid sites active for the sugar isomerization. In comparison, ethanol adsorbs relatively more strongly than methanol, hence is retained in the pores where solvated fructose is preferentially prevented from the further reaction on Bronsted acid sites situated outside of the pore space. NMR relaxation measurements using pyridine and tetrahydrofuran (THF) and pyridine-DRIFTS measurements suggest metal doping had little effect on the overall relative acid strength of the zeolites but resulted in zeolites with increased Lewis acid strength relative to the non-doped zeolites. The results reported provide direct experimental evidence on the importance of adsorption properties of solvents within zeolites used for glucose to fructose isomerization and may serve as a starting point for a new approach towards designing and optimizing such catalytic systems. & COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2023
Forster L., Kashbor M.M.M., Railton J., Chansai S., Hardacre C., Conte M., et al. (2023). Low-field 2D NMR relaxation and DRIFTS studies of glucose isomerization in zeolite Y: New insights into adsorption effects on catalytic performance. JOURNAL OF CATALYSIS, 425, 269-285 [10.1016/j.jcat.2023.06.021].
Forster L.; Kashbor M.M.M.; Railton J.; Chansai S.; Hardacre C.; Conte M.; D'Agostino C.
File in questo prodotto:
File Dimensione Formato  
D'Agostino et al., 2023.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 3.19 MB
Formato Adobe PDF
3.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/940839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact