Car fluff is the waste produced after end-of-life-vehicles (ELVs) shredding and metal recovery. It is made of plastics, rubber, glass, textiles and residual metals and it accounts for almost one-third of a vehicle mass. Due to the approaching of Directive 2000/53/EC recycling targets, 85% recycling rate and 95% recovery rate in 2015, the implementation of automotive shredder residue (ASR) sorting and recycling technologies appears strategic. The present work deals with the characterization of the shredder residue coming from an industrial plant, representative of the Italian situation, as for annual fluxes and technologies involved. The aim of this study is to characterize ASR in order to study and develop a cost effective and environmentally sustainable recycling system. Results show that almost half of the residue is made of fines and the remaining part is mainly composed of polymers. Fine fraction is the most contaminated by mineral oils and heavy metals. This fraction produces also up to 40% ashes and its LHV is lower than the plastic-rich one. Foam rubber represents around half of the polymers share in car fluff. Moreover, some chemical–physical parameters exceed the limits of some parameters fixed by law to be considered refuse derived fuel (RDF). As a consequence, ASR needs to be pre-treated in order to follow the energy recovery route.
L. Morselli, F. Passarini, A. Santini, I. Vassura (2010). Automotive shredder residue (ASR) characterization for a valuable management. WASTE MANAGEMENT, 30, 2228-2234 [10.1016/j.wasman.2010.05.017].
Automotive shredder residue (ASR) characterization for a valuable management
MORSELLI, LUCIANO;PASSARINI, FABRIZIO;SANTINI, ALESSANDRO;VASSURA, IVANO
2010
Abstract
Car fluff is the waste produced after end-of-life-vehicles (ELVs) shredding and metal recovery. It is made of plastics, rubber, glass, textiles and residual metals and it accounts for almost one-third of a vehicle mass. Due to the approaching of Directive 2000/53/EC recycling targets, 85% recycling rate and 95% recovery rate in 2015, the implementation of automotive shredder residue (ASR) sorting and recycling technologies appears strategic. The present work deals with the characterization of the shredder residue coming from an industrial plant, representative of the Italian situation, as for annual fluxes and technologies involved. The aim of this study is to characterize ASR in order to study and develop a cost effective and environmentally sustainable recycling system. Results show that almost half of the residue is made of fines and the remaining part is mainly composed of polymers. Fine fraction is the most contaminated by mineral oils and heavy metals. This fraction produces also up to 40% ashes and its LHV is lower than the plastic-rich one. Foam rubber represents around half of the polymers share in car fluff. Moreover, some chemical–physical parameters exceed the limits of some parameters fixed by law to be considered refuse derived fuel (RDF). As a consequence, ASR needs to be pre-treated in order to follow the energy recovery route.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.