A new explicit solution is obtained for a general class of two-dimensional optimal stopping problems arising in real option theory. First, the solvable case of homogeneous and quasi-homogeneous problems is presented in a comprehensive framework. Then the general problem—including the unsolved case of inhomogeneous functions—is considered and an explicit expression for the value function is obtained in terms of a modified Bessel function of second kind. Then we clarify the link between the general solution method and the more elementary one in the specific (quasi-)homogeneous problem. Finally, this article provides some useful formulas and some insights for the one-dimensional case as well.

A general framework for optimal stopping problems with two risk factors and real option applications

Rossella Agliardi
In corso di stampa

Abstract

A new explicit solution is obtained for a general class of two-dimensional optimal stopping problems arising in real option theory. First, the solvable case of homogeneous and quasi-homogeneous problems is presented in a comprehensive framework. Then the general problem—including the unsolved case of inhomogeneous functions—is considered and an explicit expression for the value function is obtained in terms of a modified Bessel function of second kind. Then we clarify the link between the general solution method and the more elementary one in the specific (quasi-)homogeneous problem. Finally, this article provides some useful formulas and some insights for the one-dimensional case as well.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/939798
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact