We prove existence, uniqueness and gradient estimates of stochastic differential utility as a solution of the Cauchy problem for the following equation in ℝ3: ∂xxu + u∂yu - ∂tu = f (·,u), where f is Lipschitz continuous. We also characterize the solution in the vanishing viscosity sense. © 2002 Elsevier Science (USA). All rights reserved.

Antonelli F., Pascucci A. (2002). On the viscosity solutions of a stochastic differential utility problem. JOURNAL OF DIFFERENTIAL EQUATIONS, 186(1), 69-87 [10.1016/S0022-0396(02)00026-8].

On the viscosity solutions of a stochastic differential utility problem

Pascucci A.
2002

Abstract

We prove existence, uniqueness and gradient estimates of stochastic differential utility as a solution of the Cauchy problem for the following equation in ℝ3: ∂xxu + u∂yu - ∂tu = f (·,u), where f is Lipschitz continuous. We also characterize the solution in the vanishing viscosity sense. © 2002 Elsevier Science (USA). All rights reserved.
2002
Antonelli F., Pascucci A. (2002). On the viscosity solutions of a stochastic differential utility problem. JOURNAL OF DIFFERENTIAL EQUATIONS, 186(1), 69-87 [10.1016/S0022-0396(02)00026-8].
Antonelli F.; Pascucci A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/938498
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact