In this study, different Cobalt-Copper mixed oxides compositions for supercapacitor electrodes have been prepared, by means of electrodeposition and thermal annealing. The chemical-physical and electrochemical characterization of electrodes, as well as the effect of different Co/Cu in the ratios on the crystal lattice, electrode morphologies, and electrochemical performance of the electrodes, were investigated using X-ray diffraction (XRD), scanning electron microscopic (SEM) and cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge (GCD) tests. The results indicated that the electrode prepared from 0.06 M CoSO4 center dot 7H(2)O + 0.04 M CuSO4 center dot 5H(2)O solution (CC4) had a better electrochemical performance. The initial capacity of the CC4 electrode was 28.3 mAh/g at a scan rate of 5 mV/s with a coulombic efficiency of 94%. CC4 electrode featured capacity retention of 79.2% at a constant current density of 1 A/g after 5000 cycles.
Noormohammadi, E., Sanjabi, S., Soavi, F., Poli, F. (2023). Electrodeposited Cobalt-Copper mixed oxides for supercapacitor electrodes and investigation of the Co/Cu ratio on the electrochemical performance. MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 12(1), 53-61 [10.1007/s40243-023-00229-4].
Electrodeposited Cobalt-Copper mixed oxides for supercapacitor electrodes and investigation of the Co/Cu ratio on the electrochemical performance
Soavi, F;Poli, F
2023
Abstract
In this study, different Cobalt-Copper mixed oxides compositions for supercapacitor electrodes have been prepared, by means of electrodeposition and thermal annealing. The chemical-physical and electrochemical characterization of electrodes, as well as the effect of different Co/Cu in the ratios on the crystal lattice, electrode morphologies, and electrochemical performance of the electrodes, were investigated using X-ray diffraction (XRD), scanning electron microscopic (SEM) and cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge (GCD) tests. The results indicated that the electrode prepared from 0.06 M CoSO4 center dot 7H(2)O + 0.04 M CuSO4 center dot 5H(2)O solution (CC4) had a better electrochemical performance. The initial capacity of the CC4 electrode was 28.3 mAh/g at a scan rate of 5 mV/s with a coulombic efficiency of 94%. CC4 electrode featured capacity retention of 79.2% at a constant current density of 1 A/g after 5000 cycles.File | Dimensione | Formato | |
---|---|---|---|
2023_MRSE12_53.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.83 MB
Formato
Adobe PDF
|
3.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.