Electronic and ionic transport governs lithium-ion battery (LIB) operation. The in operando study of electronic transport in lithium-ion transition metal oxide (LMOx) cathodes at different states of charge enables the evaluation of the state of health of LIBs and the optimization of their performance. We report on elec-tronic transport in LIB cathode materials at different states of charge controlled in operando in ion-gated transistor (IGT) configuration. We considered LiNi0.5Mn0.3Co0.2O2 (NMC532)-and LiMn1.5Ni0.5O4 (LNMO)-based composite materials formulated like in conventional LIB cathodes and operated in the organic electrolyte LP30 (1M LiPF6 in ethylene carbonate:dimethyl carbonate 1:1 v/v). NMC532-and LNMO-based cathode materials were used as the tran-sistor channel materials and LP30 as the ion gating medium. Beyond its impact on the field of LIBs, our work advances the design of novel devices based on mixed ionic and electronic transport, including neuromorphic computing.
Poli, F., Herrera, J.R., Lan, T., Kumar, P., Santato, C., Soavi, F. (2023). Electronic properties of lithium-ion battery cathodes studied in ion-gated transistor configuration. ISCIENCE, 26(1), 105888-1-105888-11 [10.1016/j.isci.2022.105888].
Electronic properties of lithium-ion battery cathodes studied in ion-gated transistor configuration
Poli, FedericoPrimo
;Soavi, Francesca
Ultimo
2023
Abstract
Electronic and ionic transport governs lithium-ion battery (LIB) operation. The in operando study of electronic transport in lithium-ion transition metal oxide (LMOx) cathodes at different states of charge enables the evaluation of the state of health of LIBs and the optimization of their performance. We report on elec-tronic transport in LIB cathode materials at different states of charge controlled in operando in ion-gated transistor (IGT) configuration. We considered LiNi0.5Mn0.3Co0.2O2 (NMC532)-and LiMn1.5Ni0.5O4 (LNMO)-based composite materials formulated like in conventional LIB cathodes and operated in the organic electrolyte LP30 (1M LiPF6 in ethylene carbonate:dimethyl carbonate 1:1 v/v). NMC532-and LNMO-based cathode materials were used as the tran-sistor channel materials and LP30 as the ion gating medium. Beyond its impact on the field of LIBs, our work advances the design of novel devices based on mixed ionic and electronic transport, including neuromorphic computing.File | Dimensione | Formato | |
---|---|---|---|
2023_iScience 26_105888.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri |
Suppl-File.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.