Vibration data analysis is the driving tool for the Structural Health Monitoring (SHM) of structures in the dynamic regime, i.e., structures showing important oscillatory behaviours, which largely dominate the transportation back-bone: from terrestrial/aerial vehicles (e.g., trains, aircraft, etc.) to the supporting infrastructures (e.g., bridges, viaducts, etc.). Outstanding opportunities have recently been disclosed in the field of Intelligent Transportation Systems (ITS) by the advent of sensor-near processing functionalities, eventually empowered by Artificial Intelligence (AI). The latter allow for the extraction of damage-sensitive features at the extreme edge, without the need of transmitting long time series over the monitoring network. In this work, we explore for the first time a novel anomaly detection workflow for on-sensor vibration diagnostics, which combines the unique advantages of embedded System Identification (eSysId) as a data compression strategy with the computational/energy advantages of Tiny Machine Learning (TinyML). Experimental results conducted on a representative SHM dataset demonstrate that the proposed pipeline can achieve high classification scores (above 90%) for the health assessment of the well-known Z24 bridge. In particular, the minimal inference time (less than 44 ms) and power consumption performed while running on three different general-purpose microprocessors make it a promising solution for the development of the next generation of SHM-oriented ITS.

Zonzini, F., Burioli, L., Gashi, A., Mancini, N.F., De Marchi, L. (2023). A Tiny Convolutional Neural Network driven by System Identification for Vibration Anomaly Detection at the Extreme Edge [10.1109/COINS57856.2023.10189195].

A Tiny Convolutional Neural Network driven by System Identification for Vibration Anomaly Detection at the Extreme Edge

Zonzini, Federica
Primo
Conceptualization
;
Burioli, Letizia
Validation
;
Gashi, Andi
Data Curation
;
De Marchi, Luca
Ultimo
Supervision
2023

Abstract

Vibration data analysis is the driving tool for the Structural Health Monitoring (SHM) of structures in the dynamic regime, i.e., structures showing important oscillatory behaviours, which largely dominate the transportation back-bone: from terrestrial/aerial vehicles (e.g., trains, aircraft, etc.) to the supporting infrastructures (e.g., bridges, viaducts, etc.). Outstanding opportunities have recently been disclosed in the field of Intelligent Transportation Systems (ITS) by the advent of sensor-near processing functionalities, eventually empowered by Artificial Intelligence (AI). The latter allow for the extraction of damage-sensitive features at the extreme edge, without the need of transmitting long time series over the monitoring network. In this work, we explore for the first time a novel anomaly detection workflow for on-sensor vibration diagnostics, which combines the unique advantages of embedded System Identification (eSysId) as a data compression strategy with the computational/energy advantages of Tiny Machine Learning (TinyML). Experimental results conducted on a representative SHM dataset demonstrate that the proposed pipeline can achieve high classification scores (above 90%) for the health assessment of the well-known Z24 bridge. In particular, the minimal inference time (less than 44 ms) and power consumption performed while running on three different general-purpose microprocessors make it a promising solution for the development of the next generation of SHM-oriented ITS.
2023
2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS)
1
6
Zonzini, F., Burioli, L., Gashi, A., Mancini, N.F., De Marchi, L. (2023). A Tiny Convolutional Neural Network driven by System Identification for Vibration Anomaly Detection at the Extreme Edge [10.1109/COINS57856.2023.10189195].
Zonzini, Federica; Burioli, Letizia; Gashi, Andi; Mancini, Nicola Francesco; De Marchi, Luca
File in questo prodotto:
File Dimensione Formato  
IEEECOINS2023_SysIdCNN.pdf

accesso aperto

Descrizione: Versione camera ready accettata per presentazione a conferenza
Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 426.66 kB
Formato Adobe PDF
426.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/937833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact