We show the following symmetry property of a bounded Reinhardt domain Omega in Cn+1: let M = partial derivative Omega be the smooth boundary of Omega and let h be the Second Fundamental Form of M; if the coefficient h(T, T) related to the characteristic direction T is constant then M is a sphere. In the Appendix we state the result from a hamiltonian point of view.

Martino V. (2011). A symmetry result on reinhardt domains. DIFFERENTIAL AND INTEGRAL EQUATIONS, 24(5-6), 495-504.

A symmetry result on reinhardt domains

Martino V.
2011

Abstract

We show the following symmetry property of a bounded Reinhardt domain Omega in Cn+1: let M = partial derivative Omega be the smooth boundary of Omega and let h be the Second Fundamental Form of M; if the coefficient h(T, T) related to the characteristic direction T is constant then M is a sphere. In the Appendix we state the result from a hamiltonian point of view.
2011
Martino V. (2011). A symmetry result on reinhardt domains. DIFFERENTIAL AND INTEGRAL EQUATIONS, 24(5-6), 495-504.
Martino V.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/936675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact