Given a E (0, 1] and p E [1, +co], we define the space DMa,p(R-n) of L-p vector fields whose a-divergence is a finite Radon measure, extending the theory of divergence-measure vector fields to the distributional fractional setting. Our main results concern the absolute continuity properties of the a-divergence-measure with respect to the Hausdorff measure and fractional analogues of the Leibniz rule and the Gauss-Green formula. The sharpness of our results is discussed via some explicit examples.

Comi G.E., Stefani G. (2023). Fractional divergence-measure fields, Leibniz rule and Gauss–Green formula. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, First published online, 1-23 [10.1007/s40574-023-00370-y].

Fractional divergence-measure fields, Leibniz rule and Gauss–Green formula

Comi G. E.;
2023

Abstract

Given a E (0, 1] and p E [1, +co], we define the space DMa,p(R-n) of L-p vector fields whose a-divergence is a finite Radon measure, extending the theory of divergence-measure vector fields to the distributional fractional setting. Our main results concern the absolute continuity properties of the a-divergence-measure with respect to the Hausdorff measure and fractional analogues of the Leibniz rule and the Gauss-Green formula. The sharpness of our results is discussed via some explicit examples.
2023
Comi G.E., Stefani G. (2023). Fractional divergence-measure fields, Leibniz rule and Gauss–Green formula. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, First published online, 1-23 [10.1007/s40574-023-00370-y].
Comi G.E.; Stefani G.
File in questo prodotto:
File Dimensione Formato  
Fractional divergence-measure fields, Leibniz rule and Gauss–Green formula.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 512.41 kB
Formato Adobe PDF
512.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/936413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact