In this paper, we present an experimental assessment of the performance of a partial evaporating organic Rankine cycle (PE-ORC) power system. The system converts low temperature heat into electrical energy, with a power size around 1 kW, thus suitable for micro generation in the residential sector. Although the test bench was designed for operating with superheated vapour at the expander inlet, it has demonstrated to be able to work with the expansion occurring entirely in two-phase condition. Since the direct measurement of the vapour quality is not possible using the sensors installed in the test rig, the state of the fluid in the two-phase condition is estimated by means of the thermal balance at the heat exchangers, so the thermodynamic cycle can be evaluated. Temperatures of the heat source in the range between 40 C and 75 C have been tested, and for each temperature value the vapour quality at the expander inlet has been varied by regulating the feed -pump rotating speed. Experimental data are provided regarding the performance of the overall cycle, of the heat exchangers, of the expander and of the feed -pump. It was observed that the effectiveness of the evaporator and the efficiency of the pump are improved with respect to the operation with superheated vapour at the expander inlet. However, the overall performance is lower, especially due to the high ratio of the pump consumption over the expander produced power, commonly called back work ratio (BWR). The latter, under some boundary conditions, has resulted higher than the unit, meaning that the system is not able to produce net electrical power. The aim of the paper is to identify the design characteristics required by a micro -ORC energy system in order to enhance its performance in the PE operating mode.

Experimental Analysis of Partial Evaporation Micro-ORC for low -temperature Heat Recovery / Ottaviano, S; Poletto, C; De Pascale, A; Bianchi, M. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - ELETTRONICO. - 2511:012015(2023), pp. 012015.1-012015.13. (Intervento presentato al convegno XXVI Biennial Symposium on Measuring Techniques in Turbomachinery tenutosi a Pisa, Italy nel 28-30 Sept. 2022) [10.1088/1742-6596/2511/1/012015].

Experimental Analysis of Partial Evaporation Micro-ORC for low -temperature Heat Recovery

Ottaviano, S
;
Poletto, C;De Pascale, A;Bianchi, M
2023

Abstract

In this paper, we present an experimental assessment of the performance of a partial evaporating organic Rankine cycle (PE-ORC) power system. The system converts low temperature heat into electrical energy, with a power size around 1 kW, thus suitable for micro generation in the residential sector. Although the test bench was designed for operating with superheated vapour at the expander inlet, it has demonstrated to be able to work with the expansion occurring entirely in two-phase condition. Since the direct measurement of the vapour quality is not possible using the sensors installed in the test rig, the state of the fluid in the two-phase condition is estimated by means of the thermal balance at the heat exchangers, so the thermodynamic cycle can be evaluated. Temperatures of the heat source in the range between 40 C and 75 C have been tested, and for each temperature value the vapour quality at the expander inlet has been varied by regulating the feed -pump rotating speed. Experimental data are provided regarding the performance of the overall cycle, of the heat exchangers, of the expander and of the feed -pump. It was observed that the effectiveness of the evaporator and the efficiency of the pump are improved with respect to the operation with superheated vapour at the expander inlet. However, the overall performance is lower, especially due to the high ratio of the pump consumption over the expander produced power, commonly called back work ratio (BWR). The latter, under some boundary conditions, has resulted higher than the unit, meaning that the system is not able to produce net electrical power. The aim of the paper is to identify the design characteristics required by a micro -ORC energy system in order to enhance its performance in the PE operating mode.
2023
Journal of Physics: Conference Series - Proc. of XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
1
13
Experimental Analysis of Partial Evaporation Micro-ORC for low -temperature Heat Recovery / Ottaviano, S; Poletto, C; De Pascale, A; Bianchi, M. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - ELETTRONICO. - 2511:012015(2023), pp. 012015.1-012015.13. (Intervento presentato al convegno XXVI Biennial Symposium on Measuring Techniques in Turbomachinery tenutosi a Pisa, Italy nel 28-30 Sept. 2022) [10.1088/1742-6596/2511/1/012015].
Ottaviano, S; Poletto, C; De Pascale, A; Bianchi, M
File in questo prodotto:
File Dimensione Formato  
167_MTT_2023_J._Phys.__Conf._Ser._2511_012015.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/935373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact