Let γn = [x1, …, xn] be the nth lower central word. Suppose that G is a profinite group where the conjugacy classes xγn(G) contains less than 2ℵ0 elements for any x ∈ G. We prove that then γn+1 (G) has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group G is finite-by-nilpotent if and only if there is a positive integer n such that xγn(G) contains less than 2ℵ0 elements, for any x ∈ G.
Detomi E., Morigi M. (2020). On finite-by-nilpotent profinite groups. INTERNATIONAL JOURNAL OF GROUP THEORY, 9(4), 223-229 [10.22108/ijgt.2019.119581.1577].
On finite-by-nilpotent profinite groups
Morigi M.
2020
Abstract
Let γn = [x1, …, xn] be the nth lower central word. Suppose that G is a profinite group where the conjugacy classes xγn(G) contains less than 2ℵ0 elements for any x ∈ G. We prove that then γn+1 (G) has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group G is finite-by-nilpotent if and only if there is a positive integer n such that xγn(G) contains less than 2ℵ0 elements, for any x ∈ G.File | Dimensione | Formato | |
---|---|---|---|
IJGT_2020 _Vol 9_Issue 4_Pages 223-229.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
194.47 kB
Formato
Adobe PDF
|
194.47 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.