Let γn = [x1, …, xn] be the nth lower central word. Suppose that G is a profinite group where the conjugacy classes xγn(G) contains less than 2ℵ0 elements for any x ∈ G. We prove that then γn+1 (G) has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group G is finite-by-nilpotent if and only if there is a positive integer n such that xγn(G) contains less than 2ℵ0 elements, for any x ∈ G.

Detomi E., Morigi M. (2020). On finite-by-nilpotent profinite groups. INTERNATIONAL JOURNAL OF GROUP THEORY, 9(4), 223-229 [10.22108/ijgt.2019.119581.1577].

On finite-by-nilpotent profinite groups

Morigi M.
2020

Abstract

Let γn = [x1, …, xn] be the nth lower central word. Suppose that G is a profinite group where the conjugacy classes xγn(G) contains less than 2ℵ0 elements for any x ∈ G. We prove that then γn+1 (G) has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group G is finite-by-nilpotent if and only if there is a positive integer n such that xγn(G) contains less than 2ℵ0 elements, for any x ∈ G.
2020
Detomi E., Morigi M. (2020). On finite-by-nilpotent profinite groups. INTERNATIONAL JOURNAL OF GROUP THEORY, 9(4), 223-229 [10.22108/ijgt.2019.119581.1577].
Detomi E.; Morigi M.
File in questo prodotto:
File Dimensione Formato  
IJGT_2020 _Vol 9_Issue 4_Pages 223-229.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 194.47 kB
Formato Adobe PDF
194.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/933974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact