Cooperation and knowledge sharing are of paramount importance in the evolution of an intelligent species. Knowledge sharing requires a set of symbols with a shared interpretation, enabling effective communication supporting cooperation. The engineering of intelligent systems may then benefit from the distribution of knowledge among multiple components capable of cooperation and symbolic knowledge sharing. Accordingly, in this paper, we propose a roadmap for the exploitation of knowledge representation and sharing to foster higher degrees of artificial intelligence. We do so by envisioning intelligent systems as composed by multiple agents, capable of cooperative (transfer) learning—Co(T)L for short. In CoL, agents can improve their local (sub-symbolic) knowledge by exchanging (symbolic) information among each others. In CoTL, agents can also learn new tasks autonomously by sharing information about similar tasks. Along this line, we motivate the introduction of Co(T)L and discuss benefits and feasibility.
Matteo Magnini, G.C. (2023). Bridging Symbolic and Sub-Symbolic AI: Towards Cooperative Transfer Learning in Multi-Agent Systems. Aachen : Sun SITE Central Europe, RWTH Aachen University.
Bridging Symbolic and Sub-Symbolic AI: Towards Cooperative Transfer Learning in Multi-Agent Systems
Matteo Magnini
;Giovanni Ciatto;Andrea Omicini
2023
Abstract
Cooperation and knowledge sharing are of paramount importance in the evolution of an intelligent species. Knowledge sharing requires a set of symbols with a shared interpretation, enabling effective communication supporting cooperation. The engineering of intelligent systems may then benefit from the distribution of knowledge among multiple components capable of cooperation and symbolic knowledge sharing. Accordingly, in this paper, we propose a roadmap for the exploitation of knowledge representation and sharing to foster higher degrees of artificial intelligence. We do so by envisioning intelligent systems as composed by multiple agents, capable of cooperative (transfer) learning—Co(T)L for short. In CoL, agents can improve their local (sub-symbolic) knowledge by exchanging (symbolic) information among each others. In CoTL, agents can also learn new tasks autonomously by sharing information about similar tasks. Along this line, we motivate the introduction of Co(T)L and discuss benefits and feasibility.File | Dimensione | Formato | |
---|---|---|---|
paper2.pdf
accesso aperto
Descrizione: PDF editoriale
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.