The fabrication of thin-film electrodes, which contain metal nanoparticles and nanostructures for applications in electrochemical sensing as well as energy conversion and storage, is often based on multi-step procedures that include two main passages: (i) the synthesis and purification of nanomaterials and (ii) the fabrication of thin films by coating electrode supports with these nanomaterials. The patterning and miniaturization of thin film electrodes generally require masks or advanced patterning instrumentation. In recent years, various approaches have been presented to integrate the spatially resolved deposition of metal precursor solutions and the rapid conversion of the precursors into metal nanoparticles. To achieve the latter, high intensity light irradiation has, in particular, become suitable as it enables the photochemical, photocatalytical, and photothermal conversion of the precursors during or slightly after the precursor deposition. The conversion of the metal precursors directly on the target substrates can make the use of capping and stabilizing agents obsolete. This review focuses on hybrid platforms that comprise digital metal precursor ink printing and high intensity light irradiation for inducing metal precursor conversions into patterned metal and alloy nanoparticles. The combination of the two methods has recently been named Print-Light-Synthesis by a group of collaborators and is characterized by its sustainability in terms of low material consumption, low material waste, and reduced synthesis steps. It provides high control of precursor loading and light irradiation, both affecting and improving the fabrication of thin film electrodes.

Print-Light-Synthesis for Single-Step Metal Nanoparticle Synthesis and Patterned Electrode Production / Gianvittorio, Stefano; Tonelli, Domenica; Lesch, Andreas. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 13:13(2023), pp. 1915.1-1915.21. [10.3390/nano13131915]

Print-Light-Synthesis for Single-Step Metal Nanoparticle Synthesis and Patterned Electrode Production

Gianvittorio, Stefano;Tonelli, Domenica;Lesch, Andreas
2023

Abstract

The fabrication of thin-film electrodes, which contain metal nanoparticles and nanostructures for applications in electrochemical sensing as well as energy conversion and storage, is often based on multi-step procedures that include two main passages: (i) the synthesis and purification of nanomaterials and (ii) the fabrication of thin films by coating electrode supports with these nanomaterials. The patterning and miniaturization of thin film electrodes generally require masks or advanced patterning instrumentation. In recent years, various approaches have been presented to integrate the spatially resolved deposition of metal precursor solutions and the rapid conversion of the precursors into metal nanoparticles. To achieve the latter, high intensity light irradiation has, in particular, become suitable as it enables the photochemical, photocatalytical, and photothermal conversion of the precursors during or slightly after the precursor deposition. The conversion of the metal precursors directly on the target substrates can make the use of capping and stabilizing agents obsolete. This review focuses on hybrid platforms that comprise digital metal precursor ink printing and high intensity light irradiation for inducing metal precursor conversions into patterned metal and alloy nanoparticles. The combination of the two methods has recently been named Print-Light-Synthesis by a group of collaborators and is characterized by its sustainability in terms of low material consumption, low material waste, and reduced synthesis steps. It provides high control of precursor loading and light irradiation, both affecting and improving the fabrication of thin film electrodes.
2023
Print-Light-Synthesis for Single-Step Metal Nanoparticle Synthesis and Patterned Electrode Production / Gianvittorio, Stefano; Tonelli, Domenica; Lesch, Andreas. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 13:13(2023), pp. 1915.1-1915.21. [10.3390/nano13131915]
Gianvittorio, Stefano; Tonelli, Domenica; Lesch, Andreas
File in questo prodotto:
File Dimensione Formato  
nanomaterials-13-01915.pdf

accesso aperto

Descrizione: Published version
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.15 MB
Formato Adobe PDF
5.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/932815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact