: Transition metal dichalcogenide (TMD) coatings have attracted enormous scientific and industrial interest due to their outstanding tribological behavior. The paradigmatic example is MoS2 , even though selenides and tellurides have demonstrated superior tribological properties. Here, an innovative in operando conversion of Se nanopowders into lubricious 2D selenides, by sprinkling them onto sliding metallic surfaces coated with Mo and W thin films, is described. Advanced material characterization confirms the tribochemical formation of a thin tribofilm containing selenides, reducing the coefficient of friction down to below 0.1 in ambient air, levels typically reached using fully formulated oils. Ab initio molecular dynamics simulations under tribological conditions reveal the atomistic mechanisms that result in the shear-induced synthesis of selenide monolayers from nanopowders. The use of Se nanopowder provides thermal stability and prevents outgassing in vacuum environments. Additionally, the high reactivity of the Se nanopowder with the transition metal coating in the conditions prevailing in the contact interface yields highly reproducible results, making it particularly suitable for the replenishment of sliding components with solid lubricants, avoiding the long-lasting problem of TMD-lubricity degradation caused by environmental molecules. The suggested straightforward approach demonstrates an unconventional and smart way to synthesize TMDs in operando and exploit their friction- and wear-reducing impact.

Grützmacher, P.G., Cutini, M., Marquis, E., Rodríguez Ripoll, M., Riedl, H., Kutrowatz, P., et al. (2023). Se Nanopowder Conversion into Lubricious 2D Selenide Layers by Tribochemical Reactions. ADVANCED MATERIALS, 35(42), 1-10 [10.1002/adma.202302076].

Se Nanopowder Conversion into Lubricious 2D Selenide Layers by Tribochemical Reactions

Cutini, Michele;Marquis, Edoardo;Righi, Maria Clelia
2023

Abstract

: Transition metal dichalcogenide (TMD) coatings have attracted enormous scientific and industrial interest due to their outstanding tribological behavior. The paradigmatic example is MoS2 , even though selenides and tellurides have demonstrated superior tribological properties. Here, an innovative in operando conversion of Se nanopowders into lubricious 2D selenides, by sprinkling them onto sliding metallic surfaces coated with Mo and W thin films, is described. Advanced material characterization confirms the tribochemical formation of a thin tribofilm containing selenides, reducing the coefficient of friction down to below 0.1 in ambient air, levels typically reached using fully formulated oils. Ab initio molecular dynamics simulations under tribological conditions reveal the atomistic mechanisms that result in the shear-induced synthesis of selenide monolayers from nanopowders. The use of Se nanopowder provides thermal stability and prevents outgassing in vacuum environments. Additionally, the high reactivity of the Se nanopowder with the transition metal coating in the conditions prevailing in the contact interface yields highly reproducible results, making it particularly suitable for the replenishment of sliding components with solid lubricants, avoiding the long-lasting problem of TMD-lubricity degradation caused by environmental molecules. The suggested straightforward approach demonstrates an unconventional and smart way to synthesize TMDs in operando and exploit their friction- and wear-reducing impact.
2023
Grützmacher, P.G., Cutini, M., Marquis, E., Rodríguez Ripoll, M., Riedl, H., Kutrowatz, P., et al. (2023). Se Nanopowder Conversion into Lubricious 2D Selenide Layers by Tribochemical Reactions. ADVANCED MATERIALS, 35(42), 1-10 [10.1002/adma.202302076].
Grützmacher, Philipp G; Cutini, Michele; Marquis, Edoardo; Rodríguez Ripoll, Manel; Riedl, Helmut; Kutrowatz, Philip; Bug, Stefan; Hsu, Chia-Jui; Bern...espandi
File in questo prodotto:
File Dimensione Formato  
Advanced Materials - 2023 - Gr tzmacher - Se Nanopowder Conversion into Lubricious 2D Selenide Layers by Tribochemical.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/932757
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact