We study the top resonance states of the cubic anharmonic oscillator H(β) = p2 + x2 + i√βx3 for β on the complex plane cut on the negative semiaxis. In particular, by the semiclassical scaling and semiclassical methods, we prove that the top resonance states do not belong to L2(R).
V. Grecchi, M. Maioli, A. Martinez (2010). The top resonances of the cubic oscillator. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 43 n.47 [10.1088/1751-8113/43/47/474027].
The top resonances of the cubic oscillator
GRECCHI, VINCENZO;MARTINEZ, ANDRE' GEORGES
2010
Abstract
We study the top resonance states of the cubic anharmonic oscillator H(β) = p2 + x2 + i√βx3 for β on the complex plane cut on the negative semiaxis. In particular, by the semiclassical scaling and semiclassical methods, we prove that the top resonance states do not belong to L2(R).File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.