Shock waves and shock-induced phase transitions are theoretically and numerically studied on the basis of the system of Euler equations with caloric and thermal equations of state for a system of hard spheres with internal degrees of freedom. First, by choosing the unperturbed state the state before the shock wave in the liquid phase, the Rankine-Hugoniot conditions are studied and their solutions are classified on the basis of the phase of the perturbed state the state after the shock wave, being a shock-induced phase transition possible under certain conditions. With this regard, the important role of the internal degrees of freedom is shown explicitly. Second, the admissibility stability of shock waves is studied by means of the results obtained by Liu in the theory of hyperbolic systems. It is shown that another type of instability of a shock wave can exist even though the perturbed state is thermodynamically stable. Numerical calculations have been performed in order to confirm the theoretical results in the case of admissible shocks and to obtain the actual evolution of the wave profiles in the case of inadmissible shocks shock splitting phenomena.

Shock-induced phase transition in systems of hard spheres with internal degrees of freedom

MENTRELLI, ANDREA;RUGGERI, TOMMASO ANTONIO;
2010

Abstract

Shock waves and shock-induced phase transitions are theoretically and numerically studied on the basis of the system of Euler equations with caloric and thermal equations of state for a system of hard spheres with internal degrees of freedom. First, by choosing the unperturbed state the state before the shock wave in the liquid phase, the Rankine-Hugoniot conditions are studied and their solutions are classified on the basis of the phase of the perturbed state the state after the shock wave, being a shock-induced phase transition possible under certain conditions. With this regard, the important role of the internal degrees of freedom is shown explicitly. Second, the admissibility stability of shock waves is studied by means of the results obtained by Liu in the theory of hyperbolic systems. It is shown that another type of instability of a shock wave can exist even though the perturbed state is thermodynamically stable. Numerical calculations have been performed in order to confirm the theoretical results in the case of admissible shocks and to obtain the actual evolution of the wave profiles in the case of inadmissible shocks shock splitting phenomena.
Taniguchi S. ; Mentrelli A. ; Zhao N. ; Ruggeri T.; Sugiyama M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/92902
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact