We consider the operator in (1.1) and prove that it is analytic hypoelliptic. This operator is linked to a stationary Schrödinger equation with a magnetic field and an anharmonic type potential. It is also a sum of squares of vector fields exhibiting a symplectic characteristic variety. This aspect is discussed in the introduction.

Bove A., Chinni G., Mughetti M. (2023). On a class of sums of squares related to Hamiltonians with a non periodic magnetic field. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 526(2), 1-20 [10.1016/j.jmaa.2023.127303].

On a class of sums of squares related to Hamiltonians with a non periodic magnetic field

Bove A.
;
Chinni G.
;
Mughetti M.
2023

Abstract

We consider the operator in (1.1) and prove that it is analytic hypoelliptic. This operator is linked to a stationary Schrödinger equation with a magnetic field and an anharmonic type potential. It is also a sum of squares of vector fields exhibiting a symplectic characteristic variety. This aspect is discussed in the introduction.
2023
Bove A., Chinni G., Mughetti M. (2023). On a class of sums of squares related to Hamiltonians with a non periodic magnetic field. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 526(2), 1-20 [10.1016/j.jmaa.2023.127303].
Bove A.; Chinni G.; Mughetti M.
File in questo prodotto:
File Dimensione Formato  
On a class of sums of squares related to Hamiltonians with a non periodic magnetic field(A.Bove_G.Chinni_M.Mughetti).pdf

embargo fino al 16/04/2025

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 495.7 kB
Formato Adobe PDF
495.7 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/928493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact