Fear conditioning is used to investigate the neural bases of threat and anxiety, and to understand their flexible modifications when the environment changes. This study aims to examine the temporal evolution of brain rhythms using electroencephalographic signals recorded in healthy volunteers during a protocol of Pavlovian fear conditioning and reversal. Power changes and Granger connectivity in theta, alpha, and gamma bands are investigated from neuroelectrical activity reconstructed on the cortex. Results show a significant increase in theta power in the left (contralateral to electrical shock) portion of the midcingulate cortex during fear acquisition, and a significant decrease in alpha power in a broad network over the left posterior-frontal and parietal cortex. These changes occur since the initial trials for theta power, but require more trials (3/4) to develop for alpha, and are also present during reversal, despite being less pronounced. In both bands, relevant changes in connectivity are mainly evident in the last block of reversal, just when power differences attenuate. No significant changes in the gamma band were detected. We conclude that the increased theta rhythm in the cingulate cortex subserves fear acquisition and is transmitted to other cortical regions via increased functional connectivity allowing a fast theta synchronization, whereas the decrease in alpha power can represent a partial activation of motor and somatosensory areas contralateral to the shock side in the presence of a dangerous stimulus. In addition, connectivity changes at the end of reversal may reflect long-term alterations in synapses necessary to reverse the previously acquired contingencies.
Pirazzini G., Starita F., Ricci G., Garofalo S., di Pellegrino G., Magosso E., et al. (2023). Changes in brain rhythms and connectivity tracking fear acquisition and reversal. BRAIN STRUCTURE AND FUNCTION, 228(5), 1259-1281 [10.1007/s00429-023-02646-7].
Changes in brain rhythms and connectivity tracking fear acquisition and reversal
Pirazzini G.
;Starita F.;Ricci G.;Garofalo S.;di Pellegrino G.;Magosso E.;Ursino M.
2023
Abstract
Fear conditioning is used to investigate the neural bases of threat and anxiety, and to understand their flexible modifications when the environment changes. This study aims to examine the temporal evolution of brain rhythms using electroencephalographic signals recorded in healthy volunteers during a protocol of Pavlovian fear conditioning and reversal. Power changes and Granger connectivity in theta, alpha, and gamma bands are investigated from neuroelectrical activity reconstructed on the cortex. Results show a significant increase in theta power in the left (contralateral to electrical shock) portion of the midcingulate cortex during fear acquisition, and a significant decrease in alpha power in a broad network over the left posterior-frontal and parietal cortex. These changes occur since the initial trials for theta power, but require more trials (3/4) to develop for alpha, and are also present during reversal, despite being less pronounced. In both bands, relevant changes in connectivity are mainly evident in the last block of reversal, just when power differences attenuate. No significant changes in the gamma band were detected. We conclude that the increased theta rhythm in the cingulate cortex subserves fear acquisition and is transmitted to other cortical regions via increased functional connectivity allowing a fast theta synchronization, whereas the decrease in alpha power can represent a partial activation of motor and somatosensory areas contralateral to the shock side in the presence of a dangerous stimulus. In addition, connectivity changes at the end of reversal may reflect long-term alterations in synapses necessary to reverse the previously acquired contingencies.File | Dimensione | Formato | |
---|---|---|---|
s00429-023-02646-7.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
10.23 MB
Formato
Adobe PDF
|
10.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.