The cellular vehicle-to-everything (C-V2X) sidelink technology, specified in the long-term evolution (LTE) and further improved in the 5G new radio (NR) standards to facilitate direct data exchange between vehicles, will play a crucial role in revolutionizing transportation systems. However, the demand for very high reliability and ultralow latency services especially challenges the sidelink resource allocation mechanism when performed by distributed vehicles, in the so-called autonomous mode. One of the major causes of performance degradation is the resource allocation mechanism, which was designed for orthogonal multiple access (OMA) and can generate interference and collisions under high load conditions. In this context, here we argue in favor of the use of non-OMA (NOMA) as a game changer for the sidelink in the upcoming 6G V2X, and the purpose of this article is to provide a reference for further intriguing studies in the field. Additionally, the gain achievable over conventional allocation schemes by enabling NOMA through the use of successive interference cancelation (SIC) at the receiver is measured through realistic simulations conducted when considering the latest C-V2X specifications.
Bazzi A., Campolo C., Todisco V., Bartoletti S., Decarli N., Molinaro A., et al. (2023). Toward 6G Vehicle-to-Everything Sidelink: Nonorthogonal Multiple Access in the Autonomous Mode. IEEE VEHICULAR TECHNOLOGY MAGAZINE, 18(2), 2-11 [10.1109/MVT.2023.3252278].
Toward 6G Vehicle-to-Everything Sidelink: Nonorthogonal Multiple Access in the Autonomous Mode
Bazzi A.
Primo
;Todisco V.;
2023
Abstract
The cellular vehicle-to-everything (C-V2X) sidelink technology, specified in the long-term evolution (LTE) and further improved in the 5G new radio (NR) standards to facilitate direct data exchange between vehicles, will play a crucial role in revolutionizing transportation systems. However, the demand for very high reliability and ultralow latency services especially challenges the sidelink resource allocation mechanism when performed by distributed vehicles, in the so-called autonomous mode. One of the major causes of performance degradation is the resource allocation mechanism, which was designed for orthogonal multiple access (OMA) and can generate interference and collisions under high load conditions. In this context, here we argue in favor of the use of non-OMA (NOMA) as a game changer for the sidelink in the upcoming 6G V2X, and the purpose of this article is to provide a reference for further intriguing studies in the field. Additionally, the gain achievable over conventional allocation schemes by enabling NOMA through the use of successive interference cancelation (SIC) at the receiver is measured through realistic simulations conducted when considering the latest C-V2X specifications.File | Dimensione | Formato | |
---|---|---|---|
MVT325 post print.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.